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1 Overview and Motivation
1.1 Introduction
In this course we address the problem of minimising a given function f of n variables. This is a
hard problem in a sense made precise below (Section 3). The conventional algorithm of gradient
descent is efficient at finding local minima, but not global ones. While quantum computers provide
a speed-up, for such computationally expensive problems the gain is insignificant. We look for
alternative approaches which may utilise either classical or quantum devices. Our strategy, sketched
in Figure 1.1, makes use of the fact that any optimisation problem of this form may be mapped to
the problem of finding the global minimum of the spin Hamiltonian of the XY-model.

As illustrated, we will discuss both mathematical models (networks) that realise the minimi-
sation of the Hamiltonian, and physical systems capable of performing the optimisation in reality.
The crux of the problem is that this method should obtain a global minima, not just a local one,
and do so relatively efficiently.

1.2 Hybrid Photonics Computing
1.2.1 Limitations of Conventional Computing

In previous decades, the need to solve optimisation problems of larger dimensionality in less time has
been met by the doubling of the number of transistors on (and so computing power of) microchips
roughly every two years – an observation known as Moore’s law. This is in part made possible
by Dennard scaling, which describes how despite this increase the density of power consumption
remains approximately constant. However, these trends have begun to break down as CMOS, the
technology used to fabricate microchips, is reaching its physical limits: oxide layers may now be
only several atoms thick with quantum effects such as electron tunnelling becoming problematic,
leading to increased power consumption. Moreover, conventional computers based on von Neumann
architecture have the fundamental limitation that instructions and data are handled sequentially
(rather than simultaneously) by the central processing unit (CPU).
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θi θj

Jij

Optimisation Problem
min

x
f (x1, . . . , xn)

H = −
∑
ij

Jij cos (θi − θj)

Physical realisation of H

Obtain θi in ground state

Mathematical model for H

e.g. gradient descent

θ̇i = ∂H

∂θi

Ground state H0 described by
fixed point θ̇i = 0 of dynamics

Mapping
x→ θ

Realisation

Figure 1.1: Schematic for solving optimisation problems. The problem is firstly mapped to a spin Hamil-
tonian H i.e. finding the ground state of H. There are two aspects to doing so: a mathematical model
with dynamics describing evolution to the minimum of H and a physical system, here a network of coupled
oscillators, capable of realising these dynamics. Performing the simulation, the phases θi should settle in
the ground state of H, at which point they can be read off to obtain the solution to the original problem.
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input

wij

output

wij < 0 inhibitory
wij > 0 excitatory

N neurons
N2 connections

(a)

ψi ψj

Jij

ψi(t) = √ρieiθi

ρi(t) occupation and θi(t)
phase of ith oscillator

(b)

Figure 1.2: Non-conventional computing. (a) A neural network consists of layers of ‘neurons’ with
programmable connections wij . This may be implemented in, for example, a photonic network where the
neurons are made from materials with particular optical properties and electromagnetic waves are used
to transfer information along the connections (we will study a type photonic network – a coherent Ising
machine – in Section 11). (b) In a coherent network, oscillators characterised by a magnitude and phase
are arranged in a graph and interact according to couplings Jij .

1.2.2 Non-conventional and Neuromorphic Computing

Alternatives to von Neumann architecture include neural networks, capable of processing vast
amounts of data in parallel (Figure 1.2a), and coherent networks, which consist of systems of
coupled oscillators such lasers and Bose-Einstein condensates (Figure 1.2b). The goal is to design
processors that can integrate and process massive amounts of information whilst using little energy.

A source of inspiration is the human brain, which boasts some 1015 synaptic connections (1011

neurons with 104 inputs per neuron) and achieves a computational efficiency1 of ∼ 1018MACs−1

at only ∼ 20W. This implies an expenditure of less than 1 atto Joule (10−18J) per MAC, some
8 orders of magnitude less than the ∼ 100pJ per MAC achieved by current supercomputers. The
suggestion then, is that neuromorphic and other novel computing techniques have the potential to
greatly surpass the performance of any conventional computer.

1MAC stands for multiply-accumulate, the common operation of multiplying two numbers together and adding
it onto a running total.
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2 Spin Hamiltonians and Non-linear Programming
2.1 The XY and Ising Models
The Hamiltonian appearing in Figure 1.1 is the two-dimensional XY model familiar from statistical
physics. This describes classical spins (vectors of unit length) on a lattice with couplings Jij :

HXY = −
∑
ij

Jijsi · sj ≡ −
∑
ij

Jij cos (θi − θj) , si = (cos θi, sin θi) (2.1)

where each spin is parametrised by the angle θi ∈ [0, 2π) it makes with some reference axis and
in the double sum i, j independently range over all sites of the lattice (see warning below). The
system is normally taken to be translation-invariant, with periodic boundary conditions and Jij the
same when viewed from any site of the lattice. These couplings are in principle otherwise arbitrary,
however the case Jij = 0 unless i and j are nearest neighbours is most often considered.2 Without
loss of generality Jii = 0 since |si|2 = 1 and adding a constant to the energy does not change the
physics (minimisation problem).

When Jij > 0, the spins want (i.e. to minimise the energy) to align in the same direction,
whereas when Jij < 0 they tend to align in opposite directions. In view of the situation when
each spin corresponds to a magnetic moment, these two cases are referred to as ferromagnetic
and antiferromagnetic couplings, respectively. However, the same language is used whether the
spins represent superconducting qubits, electromagnetic oscillators or some other entity. Of course,
finding the global minimum of (2.3) corresponds to finding the ground state (spin configuration)
and its energy for the physical system described. Examples of the ground state for a few simple
systems are given in Section 2.3.

Although the model is often written with a term

−
∑
i

hi · si = −
∑
i

hi cos θi (2.2)

describing the interaction of spins with an external field hi that can vary from one site to the next,
this term can always be incorporated in the spin-spin sum by introducing an additional spin sk at
fixed θk = 0 that interacts with all other spins such that Jik cos (θi − θk) = hi cos θi. Thus, we only
need consider the form (2.1), possibly with long-range interactions.

The other spin model we will consider extensively is the two-dimensional Ising model. Here the
spins are discrete variables, taking the values si = ±1:

HI = −
∑
ij

Jijsisj (2.3)

which can be viewed as the XY Hamiltonian in the limit that θi is restricted to {0, π}. Again, the
model is normally considered with nearest neighbour interactions on a physical lattice (typically,
the square lattice) and an external field, but (2.3) is sufficiently general.

2We will work with Hamiltonians defined on arbitrary graphs for which the question of interaction length is moot
(node arrangement does not necessarily correspond to a physical arrangement in space). Still, it is important to
evaluate the graph’s connectivity in mind that we want to realise these Hamiltonians in a real system.
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2.1.1 Sum Notation: A Warning

In these notes ∑
ij

Jij (2.4)

indicates a double sum
∑
i

∑
j 6=i Jij in which both couplings Jij and Jji (which are equal) are

included and self-terms are avoided. Other notations such as
∑
〈i,j〉 and

∑
i 6=j are found in the

literature, with Jii = 0 almost always implicit. The vanishing of Jij when i = j is also assumed
then we write a single sum such as

∑
j fiJij in which i is a ‘live’ index.

Unfortunately, there is no standard convention and many take the same double-sum notation
to imply j < i, meaning each pair of spins is included in the sum once only:∑

ij

Jij ↔
∑
i

∑
j<i

Jij (2.5)

Of course, the two conventions are related simply by a factor of 1/2, and indeed if one sees the
couplings written as Jij/2 our convention is certainly being used. At any rate, one should always
ask their lecturer whether they intend j < i or not.

2.2 Quadratic Programming
A general non-linear programming problem is of the form

min
x
f (x) subject to g (x) ≤ 0 and h (x) = 0, x ∈ Rn (2.6)

where both the objective function f and the constraints g, h may be non-linear. This optimisation
problem has numerous applications not only in the mathematical and physical sciences but also in
engineering, finance, logistics and industry.

We focus on quadratic programming problems (where f is quadratic and the constraints are
linear) which describe more general problems close to their optimum. In particular, the two types
of problem we initially encounter will be quadratic continuous optimisation (QCO) and quadratic
unconstrained binary optimisation (QUBO). The former is most often formulated in terms of unit
complex variables zi as

min
|zi|=1

− z†Qz, z = (z1, z2, . . . , zn), zi ∈ C (2.7)

where † denotes the Hermitian conjugate. Writing zi = cos θi + i sin θi, we realise this is the
minimisation of some XY Hamiltonian

min
θi

HXY = min
θi
−
∑
ij

Jijsi · sj (2.8)

with si = (cos θi, sin θi). In QUBO, the variables are binary so unsurprisingly we are instead
minimising an Ising Hamiltonian

min
{si}

HI = min
{si}
−
∑
ij

Jijsisj (2.9)

with arbitrary Jij i.e. long-range interactions. We will also deal with examples of the binary type
where constraints are imposed upon the variables.
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2.3 Simple Spin Systems
In this section we consider the ground state of chains of spins in the XY and Ising models in the
simple case of nearest neighbour interactions of constant strength Jij = ±J with J > 0. We use a
solid line to indicate a ferromagnetic coupling (Jij = +J) and a dashed line an antiferromagnetic
one (Jij = −J).

Jij > 0 Jij < 0

2.3.1 Two Spins

Firstly, with two spins for both models we have the ground state

E = −2J

in the ferromagnetic case and

E = −2J

in the antiferromagnetic case. Technically, each of these states are degenerate: there is two-fold
degeneracy for the Ising model, corresponding to flipping both spins (remember si takes only the
values ±1), whilst HXY is left unchanged by any rotation or reflection of the spins (O(2) symmetry).
To remove this redundancy, we choose to always fix the first spin to be up.

2.3.2 Triangle

The ferromagnetic solution is again the same for both models,

E = −6J

However the antiferromagnetic ground states now differ. For the Ising model, there is 3-fold degen-
eracy (after fixing s1 = +1):

E = −2J

The system is said to be frustrated, because after placing two spins with antiferromagnetic coupling,
the third cannot be placed so as to minimise its interactions with both of the other two. For the
XY model there is only 2-fold degeneracy:

E = −3J

8
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These states are obtained by, going around the triangle, adding a relative phase +2π/3 or −2π/3
to successive spins. The system is again frustrated to an extent, although all interactions are equal
and the ground state energy lower than in the Ising model.

2.3.3 Antiferromagnetic Rings

Consider a ring of N spins with equal couplings Jij = −J when i, j are neighbours and J > 0 (the
ferromagnetic case Jij = +J is trivial). When N is even both models have a unique ground state:

E = −2NJ

When N is odd frustration plays a role, resulting in degeneracy. There are N degenerate states for
HI , each with one ferromagnetic coupling and the rest antiferromagnetic:

E = −2(N − 2)J

While for HXY there is only 2-fold degeneracy, reflecting a choice of phase differences 2π/N or
−2π/N are you go around the N -gon:

E = 2N cos(2π/N)J

3 Elements of Complexity Theory
In this section we classify the difficulty of the problems we are interested in solving. A scheme
for doing so is provided by complexity classes, which sort problems according the asymptotics of
the computational expense of finding or verifying a solution ( with the best possible algorithm) as
the size n of the problem’s input increases. In other words, the behaviour O (n) of the number of
steps required to obtain or verify a solution, as n → ∞. Here n refers to the size in memory i.e.
number of binary digits of the input. For example, the single decimal input x1 = 12 has binary
representation 1100 (possibly up to a sign bit), so n = 4.

The primary complexity classes define collections of decision style questions. Unlike the optimi-
sation questions we have considered so far, these have a binary output i.e. yes or no. As we shall

9
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see, many optimisation problems (find min f) have a related decision style problem (is min f > 0?)
and vice versa.

A second concept we will need to define the classes is that of a turning machine. This is in
essence a finite state machine representing the operation of a classical3 computer where data is read
and processed sequentially: at each step the machine performs an action according the current input
and a set of pre-defined (programmed) rules. The machine is assumed to have infinite memory; we
are concerned with complexity in time (number of operations), not space.

3.1 Common Complexity Classes
The two most basic classes of decision problems are P and NP. P contains those decision problems
that can be solved by a turning machine in polynomial time, i.e. O (nm) for some constant m ≥
0, and NP (non-deterministic polynomial) those for which a solution may be checked, but not
necessarily obtained, in polynomial time. Simple examples of problems in P include testing whether
two numbers are coprime (have a greatest common divisor of 1) or whether a string contains a
particular substring. A well known example of an NP problem is integer factorisation, with a
possible decision style formulation of “given integers N and k, is there an integer f ≤ k that divides
N?”

Clearly P ⊆ NP, so the famous problem does P = NP? is the question of whether, if we can verify
a solution to a problem quickly, is it necessarily the case that a solution can be found quickly too?
Common experience suggests otherwise: there are many problems p ∈ NP for which no polynomial
time algorithm is known. Integer factorisation provides on example, boolean satisfiability another
(see below). Of course, such observations do not prove the non-existence of efficient algorithms,
only that we are not aware of any. Indeed, proving P 6= NP is not straightforward, despite the
number of problems we think are in NP \ P, for that very reason: it is difficult to determine how
‘hard’ a problem is beyond just looking at the best algorithms that have been devised to solve them.

Next we have NP-hard problems, which are ‘at least as hard’ of any problem in NP. More
formally, a problem q is NP-hard if any p ∈ NP can be reduced efficiently to q. Here efficient
reduction typically refers to a polynomial time algorithm that transforms inputs of p to inputs of q
such that the solution to the transformed problem solves the original problem, that is, an algorithm
that transforms any instance of p to an instance of q with the same answer. This is known as a
Karp reduction.

NP-hard problems are generally outside of NP, and may not even be decidable. This leads us
to the final class we will discuss, NP-complete, which consists of problems that are both NP-hard
and NP (Figure 3.1). Like any NP-hard problem, if you could construct an algorithm capable of
solving an NP-complete problem in polynomial time, you would be able to solve any NP problem
in polynomial time too. You could certainly do this if P = NP, but we believe this not to be
the case. A common hardness assumption is that an NP-complete problem cannot be solved in
polynomial time by any physical means (not limited to classical computers).4 With this in mind,
when designing a machine to solve NP-complete (or hard) problems using novel approaches, we
are not looking to find a polynomial time solution (impossible), rather improve upon conventional
methods either by

3Quantum computation has a separate set of classes. This is why integer factorisation is regarded as NP, despite
Shor’s ground-breaking algorithm for a polynomial-time solution on an ideal quantum computer.

4This is justified not only by the large number of NP-complete problems (& 30000) with no known efficient method
of solution known but also the omnipotence such a method would bring.
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NP NP-hard

NP-
complete

P

Figure 3.1: The intersection of NP and NP-hard defines NP-complete problems: decision problems that
any p ∈ NP can be efficiently reduced to, and with solutions that may be verified in polynomial time.

a) Finding solutions faster, or

b) Finding better solutions (for the optimisation style problems) with limited time or resources.

We will see many examples of NP-complete problems shortly. A classic one is the graph isomor-
phism problem: is G1 isomorphic to G2? Another is 3SAT : given n boolean variables x1, . . . , xn and
a set of logical clauses that relate at most 3 variables each, e.g. x2∨x5∨ x̄6 (bar denoting negation),
is there a way to satisfy all clauses simultaneously? We look at the formulation of this problem in
detail and an example in Section 4.7. Its NP-completeness (Cook-Levin Theorem) is particularly
important for the fact that polynomial time reductions from 3SAT to many spin Hamiltonians such
as HXY exist. This demonstrates that these Hamiltonians offer NP-complete problems, which they
should do as the basis of our envisioned problem solver (Figure 1.1).

A result established by G. De las Cuevas and T. Cubitt [1] that goes further is that the two-
dimension Ising model on the square lattice with nearest neighbour interactions and an external
field5 is universal in the sense that its low energy sector can reproduce the complete physics (energy
level structure and partition function) of any other classical spin model – the ultimate simulator.
In the following section, we look at how some classic NP-hard and NP-complete problems can be
mapped to the Ising model.

4 Ising Formulations of NP Problems
Following from the previous section, we consider NP-complete problems to be decision problems
“does the ground state of HI have energy 0 (or ≤ 0)?”, and NP-hard problems to be optimisation
problems “what is the ground state of HI?”. In this section we establish how some famous NP-
complete and NP-hard problems can be mapped to the Ising model i.e. formulated in terms of
these two questions.

In the following, G = (E, V ) denotes a graph (edge set E, vertex set V ) of order N = |V | which,
unless otherwise stated, is simple, undirected and unweighted. A section title with (D) indicates a
decision formulation of a problem (NP-complete) and (O) an optimisation one (NP-hard). Further
problems (covering and packing) are addressed in Example Sheet 1.

5As mentioned in Section 2.1, the external field subsumed with an additional spin, but at the expense of long-range
interactions i.e. we would no longer have a square lattice with nearest neighbour interactions.
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4.1 Partitioning Problems
4.1.1 Max-Cut (O)

Partition the vertices of G = (E, V ) into two sets such that the number of edges between
the two sets is maximised.

To illustrate the problem, consider the graph

There are evidently two solutions where the partitions have 5 connecting edges:

How to realise this result as the ground state of a spin model?
Assign to each vertex u ∈ G a value su = +1 to indicate it is in one partition and su = −1 the

other. Maximising the number of edges between the two partitions is then simply the problem of
minimising the sum ∑

(uv)∈E

susv (4.1)

which is just the minimisation of the Ising Hamiltonian HI = −
∑

(uv)∈E Juvsusv with antiferro-
magnetic couplings Juv defined by the edges of the graph:

Juv =
{
−1 if (uv) ∈ E
0 otherwise (4.2)

Indeed, one can envision (Figure 4.1) a physical system with spins prepared on the vertices of the
graph in some easy initial state and antiferromagnetic couplings are slowly6 turned on, moving the
system to a ground state describing the solution to the max-cut problem. As in the example shown
here, this will in general be only one of many degenerate ground states, but for the purposes of
optimisation we only need find one solution, not all possible solutions.

In addition to solving the NP-hard problem of maximising the number of connecting edges we
can also answer the associated NP-complete decision problem,7 “Does G have a cut of at least size
K?”, as this is simply the question of whether the energy of the ground state obtained above is at
least as negative as −K.

6We will see the relevance of the initial state being ‘easy’ and the couplings turned on ‘slowly’ in Section 7. Note
Juv is just the adjacency matrix of the graph (Section 5.1).

7This is one of Karp’s original NP-complete problems [2].
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Juv < 0

Figure 4.1: Spins are arranged in a graph with su = +1 initially and antiferromagnetic couplings estab-
lished along the edges of the graph. The value of each spin in the resulting ground state tells us the vertices
in each partition of a solution to the associated max-cut problem. Note in more general cases we have to
careful that this procedure yields a global minimum of HI , not just a local one.

4.1.2 Number Partitioning (D, O)

Given S = {n1, . . . , nN} : ni > 0, is there a partition into two disjoint subsets R, S \R
such that the sum of the elements in each set is the same i.e.∑

ni∈R
ni =

∑
ni∈S\R

ni (4.3)

If not, find a partition that minimises the mismatch.

Let si = 1 if ni ∈ R and si = −1 otherwise and note that (4.3) holds if and only if the sum
N∑
i

nisi (4.4)

vanishes. This is not a suitable Hamiltonian, since it is always lowered by removing numbers from
R and indeed the ground state has all si = −1 which is clearly not a solution. To get around this,
simply square the sum:

HI =
(

N∑
i

nisi

)2

(4.5)

Then HI is bounded below by zero and any deviation from zero is penalise. Thus, by minimising HI

one not only answers the decision problem (is the ground state energy 0?) but also the optimisation
problem in the case of no balanced solution: the ground state of HI is a configuration of spins
describing a partition of minimal mismatch.

4.1.3 Graph Partitioning (O)

Partition the vertices of a graph G = (E, V ) of even order N into equal subsets such
that the number of edges between sets is minimised.

Again assign su = 1 to one set of a proposed partition and su = −1 to the other (Figure 4.2).
Unlike max-cut problem we wish to minimise not maximise the number of connecting edges and
so require ferromagnetic (positive) couplings between the spins along the edges of the graph. The
sum ∑

(uv)∈E

1− susv
2 (4.6)
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N/2

su = +1

N/2

su = −1

Figure 4.2: A possible partitioning of a graph into equal subsets. The total number of connections between
the two partitions (red) is to be minimised.

does the trick.8 In addition, we need the partitions to be equal. The simplest way to ensure this is
with a term proportional to (∑

u∈V
su

)2

(4.7)

which vanishes in the case of equal partitions only. Together,

HI = HA +HB = A

(∑
u∈V

su

)2

+B
∑

(uv)∈E

1− suvsv
2 (4.8)

where A and B are positive constants weighting each term. These are not arbitrary: the equality
condition must hold absolutely to have a viable solution, so HA should dominate HB . In other
words, it should never be favourable to violate the A constraint. To reason a loose lower bound
on the ratio A/B, note that if ∆ is the maximum degree of G then the greatest possible gain from
violating the constraint by moving a vertex between sets is ∆B (the vertex had ∆ edges to vertices
in the other set), and the cost of doing so is at least 22A (one partition now has at least two more
vertices than the other). Hence we should choose9

A

B
≥ ∆

4 (4.9)

4.2 General Considerations
We have now seen several general features of mapping problems to Ising Hamiltonians:

• Positive terms in HI are minimised, negative terms maximised

• Terms should be included to impose constraints, appropriately weighted

• Squaring terms is a useful tactic to ensure positive semi-definiteness
8(1−susv)/2 was used instead of −susv for convenience; this term vanishes if u, v (vertices with a common edge)

are from the same partition and is 1 otherwise.
9A tighter bound can be obtained: due to the fact HA is very penalising for many spins in the same partition,

we only need to worry about moving one vertex from an equally partitioned (HA = 0) situation, in which case we
can replace B∆ by Bmin{∆, N/2} (the vertex cannot have more than N/2 edges to the other partition).

14



4 Ising Formulations of NP Problems Hybrid Photonics Computing

v1 v2

v3 v4

(a)

u
i 1 2 3 4
1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 1 0 0

(b)

Figure 4.3: (a) A directed graph with a Hamiltonian cycle and (b) values of the 42 binary variables defined
in (4.11) describing the cycle.

So far, the number of spins required to encode the problem has corresponded directly to the
number of items or vertices in the problem, N . As the next examples illustrate, this is not always
the case, and moreover it is often necessary to introduce auxiliary spins to impose constraints (for
example, in the Knapsack problem in the first example sheet).

The growth of the number of spins required to encode the problem with input size is obviously
an important consideration, since in any proposed physical simulator more spins will necessitate
larger hardware. Other factors to consider to this end are any separation of energy scales and the
connectivity of the embedding graph (that is, the graph described by the couplings Juv, which may
or may not correspond to an actual graph in the problem).

Often it is convenient to phrase problems in terms of binary variables χu with possible values
0, 1 instead of spin variables su = ±1. This makes no difference to the minimisation problem and
one can always go between the two types of variables with

su = 2χu − 1 ↔ χu = su + 1
2 (4.10)

4.3 Hamiltonian Cycles
Recall that a Hamiltonian path on a graph G = (E, V ) is a sequence of edges between vertices such
that every vertex is visited exactly once. In a Hamiltonian cycle, the path starts and ends at the
same vertex (which is visited twice). We address the problem of Hamiltonian cycles on a directed
graph, so (uv) ∈ E means you can go from u to v, but not necessarily from v to u. An example is
provided in Figure 4.3a.

4.3.1 Existence on a Directed Graph (D)

Does G have a Hamiltonian cycle?

As there are N = |V | vertices each of which could potentially be visited at any of the N steps of a
prospective cycle, we require N2 variables.10 Label the vertices in V with index u = 1, . . . N and
define

χu,i =
{

1 u visited on ith step
0 otherwise (4.11)

10Well, there are N + 1 steps but the final is predetermined since we have a cycle. In fact, we can always take the
first step to be vertex 1, fixing χ1,i = δ1,i and reducing the number of variables required to (N − 1)2.
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Our aim is to construct a Hamiltonian from the χu,i which vanishes only when these variables
describe a true cycle. We need

• A term to ensure each vertex is visited exactly once (barring the first/last vertex)

• A term to ensure that one and only one vertex is visited at each step

• A term to ensure steps are only taken between vertices which actually share an edge

An appropriate Hamiltonian is then

Hcycle =
N∑
v=1

(
1−

N∑
i=1

χv,i

)2

︸ ︷︷ ︸
visit vertex v
exactly once

+
N∑
i=1

visit exactly one vertex
in the ith step︷ ︸︸ ︷(
1−

N∑
v=1

χv,i

)2

+
N∑
i=1

∑
(uv)/∈E

χu,iχv,i+1︸ ︷︷ ︸
only travel along
edges actually in E

(4.12)

where in the final sum χu,Nχv,N+1 should be understood as χu,Nχv,1, enforcing that the (N + 1)th
vertex visited is the same as the first i.e. we have a cycle (for the corresponding path problem, this
sum would run to i = N − 1). You should check each term acts as described so that Hcycle ≥ 0 has
a zero energy ground state only if a cycle exists.

4.3.2 Travelling Salesman (O)

Given weights wuv for each edge (uv) ∈ E of a complete graph, find the Hamiltonian
cycle that minimises the sum of weights of edges in the cycle.

As written, this problem is typically phrased for a complete graph, but we can work more generally
with any graph containing Hamiltonian cycles.

The solution is simple extension of previous problem: Hcycle is used to impose that a prospective
cycle is Hamiltonian and then

HB = B
∑

(uv)∈E

Wuv

N∑
i=1

χu,iχv,i+1 (4.13)

is added so that the ground state minimises the total weight. As with the partitioning problem, in

HI = AHcycle +HB (4.14)

we need B > 0 small enough such that the constraint of Hcycle is never violated. A simple bound is

A > B max
(uv)∈E

Wuv (4.15)

since the cost of violating the cycle constraint once is at least A (travel along an edge not in E)
and the maximum gain from doing so is given by the right hand side.
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4.4 Colouring Problems
4.4.1 Graph Colouring (D)

Given an undirected graph G of order N and n colours, is it possible to colour each
vertex so that no edge connects two vertices of the same colour?

We set up binary variables similar to the cycle problems to describe the nN possible colourings of
the N vertices:

χu,i =
{

1 u has colour i
0 otherwise (4.16)

The Hamiltonian to answer this decision problem is

HI =
N∑
v=1

(
1−

n∑
i=1

χv,i︸ ︷︷ ︸
vertex v has

exactly one colour

)2
+

∑
(uv)∈E

n∑
i=1

χu,iχv,i︸ ︷︷ ︸
u and v have

different colours

(4.17)

where as indicated the first term ensures each vertex receives one colour and the second that
neighbouring vertices have different colours.

4.5 Reduction of k-local Hamiltonians
The Ising and XY models are examples of 2-local Hamiltonians since each term couples two spins.
More generally, we may have a model with interaction terms coupling up to k different spins, for
example the 3-local

H =
∑
ijk

Jijksisjsk, si ∈ {−1, 1} (4.18)

Any k-local Hamiltonian can be converted into a 2-local one with polynomial overhead.11 We
demonstrate this for the 3→ 2 case explicitly.

4.5.1 Reduction of 3-local Hamiltonians

Consider a general term wxy of a 3-local Hamiltonian with w, x, y, binary variables (recall we can
easily go back and forth between these and the spins ±1 traditionally used in statistical physics).
For x, y, z ∈ {0, 1} it is easy to show that (Appendix A)

xy = z ⇔ xy − 2xz − 2yz + 3z = 0 (4.19)

and

xy 6= z ⇔ xy − 2xz − 2yz + 3z > 0 (4.20)
11That this is possible jibes with the universality of HI (Section 3.1) although we do not attempt reduction to

nearest neighbour interactions on a square lattice, which is not straightforward.
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This allows us to replace the product wxy with a series of two variable terms involving w, x, y and
z := xy, as

wxy 7→ wz + 2 (xy − 2xz − 2yz + 3z) (4.21)

where the weighting 2 > 1 ensures that the second factor dominates the first i.e. asserts z = xy. So
a 3-local term is transformed to a 2-local one at the cost of an additional variable (spin) and some
trivial (polynomial) computations.

Next we discuss a notable problem for which a k-local Hamiltonian features.

4.6 Number Factoring
The widely used RSA cryptosystem is based on the difficulty of factorising a large integer N ,
constructed by multiplying two primes x and y (we say N is semiprime), when these primes are
unknown. We consider the slightly more general problem of determining x, y given an n-bit integer
N = xy which is odd but not necessarily semiprime.

To construct a suitable Hamiltonian we simply inspect the steps in the forward operation of
binary multiplication to obtain a condition for each digit of N . Begin by writing the binary
representations of N (known) and x, y (unknowns):

N = NnNn−1 . . .N11 (4.22)
x = xn xn−1 . . . x11 (4.23)
y = yn yn−1 . . . y11 (4.24)

where the last digit is always 1 since each integer is odd. These final digits are such that

x0 = 1, y0 = 1, N0 = x0y0 = 1 (4.25)

Call this the 0th step. The next digit N1 of N is determined by the last two digits of x and y:

x1y0 + x0y1 = N1 + 2`11 (4.26)

where the binary variable `11 accounts for the fact that without this variable the equality only
holds modulo 2: if x1y0 + x0y1 = 2 then N1 = 0 and the 1 rolls over to the next column, hence the
appearance of `11 on the left hand side of the second step,

x2y0 + x1y1 + x0y2 + `11 = N2 + 21`21 + 22`22 (4.27)

Here we needed two additional registers `22 and `21, multiplied by appropriate powers of 2. In
general for the kth step k such variables appear on the right and bk/2c on the left (b·c the floor
function):

xky0 + xk−1y1 + . . .+ x0yk + `k−1,1 + `k−2,2 + . . .+ `a,b = Nk + 2`k1 + 22`k2 + . . . 2k`kk (4.28)

where `a,b has indices

a =
⌊
k + 1

2

⌋
and b =

⌊
k

2

⌋
(4.29)
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This hierarchical procedure is continued until k = n and the multiplication completes. Convert-
ing the equation at each stage to a constraint in H is simply a matter of moving everything to one
side. We arrive at

H = (x0y0 −N0)2 + . . .

...

+
(
xky0 + . . .+ x0yk + `k−1,1 + . . .+ `a,b −Nk − 2`k1 − . . .− 2k`kk

)2
...

(4.30)

Each term is squared in order to penalise any deviation from equality and thus convey the desired
ground state. Since inside each parentheses terms are at most second order in the binary variables,
the full Hamiltonian is 4-local. As discussed above, with additional work this could be reduced to
a 2-local (Ising) Hamiltonian.

4.7 3SAT
Given k clauses C1, C2, . . . , Ck each involving at most 3 binary variables from x1, . . . , xn,
determine whether there exists a tuple (x1, . . . , xn) such that all clauses are simultane-
ously satisfied.

In logic clause has a specific meaning: it is a disjunction12 of literals such as x1 ∨x2 ∨ x̄3. Normally
the clauses are presented in ‘conjunctive normal form’ C1 ∧C2 ∧ . . . ∧Ck which evaluates true for
a solution tuple.

To appreciate the boolean satisfiability problem we reverse engineer a boolean function to con-
struct a simple instance of the problem.

4.7.1 Example and Mapping

Consider the boolean function of three boolean variables xi ∈ {0, 1}:

ϕ00 (x1, x2, x3) =
{

1 if (x1, x2, x3) = (1, 0, 0) ∨ (0, 1, 0) ∨ (0, 0, 1) ∨ (1, 1, 0)
0 otherwise (4.31)

Observe that ϕ00 can be written as a series of 3-clauses:

ϕ00 (x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) (4.32)

To see this, note that of the 23 = 8 possible values of the tuple (x1, x2, x3) those for which ϕ00
evaluates false are

(0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 1) (4.33)

i.e.

(x̄1 ∧ x̄2 ∧ x̄3) (x̄1 ∧ x2 ∧ x3) (x1 ∧ x̄2 ∧ x3) (x1 ∧ x2 ∧ x3) (4.34)
12A ∨B is a disjunction, A ∧B a conjunction.
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So (as ϕ00 is true otherwise)

ϕ00 = ¬ [(x̄1 ∧ x̄2 ∧ x̄3) ∨ (x̄1 ∧ x2 ∧ x3) ∨ (x1 ∧ x̄2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)] (4.35)

Distributing the negation ¬ according to De Morgan’s laws,

ϕ00 = ¬ (x̄1 ∧ x̄2 ∧ x̄3) ∧ ¬ (x̄1 ∧ x2 ∧ x3) ∧ ¬ (x1 ∧ x̄2 ∧ x3) ∧ ¬ (x1 ∧ x2 ∧ x3) (4.36)
= (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) (4.37)

as claimed. A 3SAT problem is to determine whether there exists a triplet (x1, x2, x3) such that
(4.37) is true. Of course, we already know the answer is positive: any of the tuples in (4.31) will
do! But in general only the conjunctive normal form will be given. How might we encode this
decision problem in an Ising Hamiltonian?

Returning to the notation of χi as a binary variable in a Hamiltonian, a naive way would be
write down a non-negative term for each clause in (4.37) that vanishes only when the clause is
satisfied:

H = (1− χ1)(1− χ2)(1− χ3) + (1− χ1)χ2χ3 + χ1(1− χ2)χ3 + χ1χ2χ3 (4.38)

so that in total H = 0 is a possibility only if the satisfiability problem has a solution, in which case
the ground state describes a solution set of literals. This is a 3-local Hamiltonian which we know
can be reduced to a 2-local one, however the embedding graph is highly connected: for a general
3SAT problem each spin will be coupled to all others. To demonstrate the universality of the Ising
Hamiltonian on the square lattice (reduction from the general 3SAT problem), Cuevas and Cubitt
used a more sophisticated mapping – see their paper [1] for the details.

5 Network Dynamics
In this section we develop the basic mathematical tools for studying dynamics on networks. A
network is an interconnected system of nodes each of which has a state, represented by some set of
variables, that evolves deterministically according to a prescribed set of rules or equations. In other
words, a graph with one more dynamic quantities at each vertex (node). The equations governing
the dynamics at one node in general depend on the state of all other nodes in the network, or at
least those that particular node is connected to. We closely follow the presentation of the topic by
Mark Newman in Chapter 17 of his book Networks [3] which you may wish to consult for further
details.

Looking ahead, in Section 6 we will introduce some specific networks capable of realising the
minimisation of the Ising and XY Hamiltonians, before moving on to discuss physical systems with
the potential to simulate them in later sections.

5.1 Graph Matrices
We begin by introducing two matrices used to represent finite graphs and properties of their spectra.
These are the adjacency matrix A and the graph Laplacian L. For a graph G = (V,E) with n = |V |
vertices (enumerated as v1, v2, . . . , vn) and m = |E| edges, both are n× n matrix with components

Aij =
{

1 if (vivj) ∈ E
0 otherwise (5.1)
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v1 v2

v3

v4 v5

Aij =


0 0 1 1 0
0 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0

 Lij =


2 0 −1 −1 0
0 1 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1



Figure 5.1: The adjacency matrix and graph Laplacian for a graph of 5 vertices.

and

Lij = kiδij −Aij =

 ki if i = j
−1 if (vivj) ∈ E
0 otherwise

(5.2)

respectively, where ki is the degree of the vertex vi ∈ V . Weights may be included in the description
by assigning Aij = wij where wij is the weight of the edge between vi and vj , but we consider un-
weighted undirected graphs for which A and L are symmetric matrices with the above components.
Examples of these matrices for a simple graph of 5 vertices are provided in Figure 5.1.

The adjacency matrix and graph Laplacian encode the structure of a network and as such feature
prominently in any discussion of dynamics on that network. In particular, we will see that their
spectra determine the stability of fixed points of the dynamics.

5.1.1 Spectra of Networks

As A and L are real symmetric matrices they have n (possibly degenerate) real eigenvalues. We
denote the eigenvalues of A by κi, ordered as κ1 ≥ κ2 ≥ . . . ≥ κn and those of L by λi, instead
ordered as λ1 ≤ λ2 ≤ . . . ≤ λn (the inconsistency in the ordering is silly, but that’s convention for
you). We list some properties of these spectra that will be useful in the following. Firstly,

i) A necessarily has both positive and negative eigenvalues (TrA = 0)

ii) 0 ≤ κ1 ≤ kmax

iii) The eigenvalues of L are non-negative and the smallest eigenvalue λ1 = 0 always

iv) kmax ≤ λn ≤ 2kmax

Here kmax is the maximum degree of the graph. We also note
∑
j Aij = ki, the degree of the ith

vertex, hence
∑
ij Aij = 2m = 2|E|. Additional bounds on the first eigenvalue of the adjacency

matrix can be obtained by evaluating the Rayleigh quotients13

xTAx

xTx
=
∑
i ciκi∑
i c

2
i

≤
∑
i c

2
iκ1∑
i c

2
i

= κ1 and xTA2x

xTx
≤ κ2

1 (5.3)

13For the second we used the fact that the largest eigenvalue of A2 is κ2
1, not κ2

n (Perron-Frobenius Theorem).
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κ1 κ2 κ3 κ4 κ5
-1.81 -1 0 0.47 2.34

λ1 λ2 λ3 λ4 λ5
0 1 1 3 5

(a)

kmax = 4
〈k〉 = 2√
〈k2〉 = 2.28

(b)

Table 1: (a) Eigenvalues of the adjacency matrix and graph Laplacian for the graph shown in Figure 5.1
and (b) the maximum, mean and root mean squared degree for this graph. Non-integer values are given to
two decimal places.

(x an arbitrary vector expanded in the eigenbasis) with the choice xi = 1 for each i:

κ1 ≥
∑
ij Aij

xTx
= 2m

n
= 〈k〉 and κ2

1 ≥
∑
i k

2
i

n
=
〈
k2〉 (5.4)

Since the variance
〈
k2〉 − 〈k〉2 of the degree distribution cannot be negative, the latter gives a

stronger condition i.e.

κ1 ≥
√
〈k2〉 ≥ 〈k〉 (5.5)

If vj is a node of maximum degree, the slightly less obvious choice of

xi =


√
kmax if i = j

1 if Aij = 1
0 otherwise

(5.6)

gives14

∑
k

Aikxk ≥


kmax if i = j√
kmax if Aij = 1

0 otherwise
=
√
kmaxxi (5.7)

and so

κ1 ≥
xTAx

xTx
≥
√
kmax (5.8)

This may offer a better bound than (5.5) or not depending on the graph under consideration.
As an example, the spectra of A and L for the graph in Figure 5.1 are given in Table 1; you

can check that each of the above bounds are satisfied.

5.2 Dynamical Systems on Networks
The general set-up for this section will be a network with one of more dynamical variables xi at each
node such that these variables are coupled together along the edges of the network i.e. xj features

14When i = j,
∑

k
Ajkxk = kmax, since node j is of degree kmax and xi = 1 when i is adjacent to j. For i adjacent

to j,
∑

k
Aikxk = Aijxj +

∑
k 6=j Aikxk ≥ Aijxj = 1 ·

√
kmax. In any other case,

∑
k
Ajkxk is at least non-negative.
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in the equation for ẋi when j is adjacent to i (in what follows, a dot denotes a time derivative).
This amounts to a high dimensional dynamical system which we recall15 can be written as a system
of coupled first order autonomous differential equations (remove higher derivatives with additional
variables yi = ẋietc., and time with ẏ = 1↔ y = t).

In general, such a system (unless linear) does not have a closed-form solution and the most
productive strategy is to identify fixed points or limit cycles of the dynamics and perform linear
stability analysis. This provides useful information about the likely behaviour of the system at long
times.

We begin with the simple case of a single variable per node,

ẋi = fi(xi) +
∑
j

Aijgij(xi, xj) 1 ≤ i ≤ n (5.9)

The function fi describes the intrinsic dynamics of the node (how it would evolve in isolation)
and gij the contribution from connections. Typically, the nodes represent identical entities (spins,
electrical oscillators etc.) meaning fi = f and gij = g are the same for every node. Although
Aij is symmetrical (the graph is undirected), g is not necessarily symmetric in its arguments:
g(xi, xj) = (1− xi)xj is a possibility, for example.

5.2.1 Linear Stability Analysis

Suppose we have been able to identify a fixed point {x∗i } of the dynamics such that

f(x∗i ) +
∑
j

Aijg(x∗i , x∗j ) = 0 ∀i (5.10)

Linearise about this fixed point by writing xi = x∗i + εi with εi � 1:

dεi
dt

= f (x∗i + εi) +
∑
j

Aijg
(
x∗i + εi, x

∗
j + εj

)
(5.11)

= f (x∗i ) +
∑
j

Aijg(x∗i , x∗j )

+ εi
df

dx

∣∣∣∣
x=x∗

i

+ εi
∑
j

Aij
∂g(u, v)
∂u

∣∣∣∣
(u,v)=(x∗

i
,x∗
j
)

+
∑
j

Aijεj
∂g(u, v)
∂v

∣∣∣∣
(u,v)=(x∗

i
,x∗
j
)

+ . . .
(5.12)

Using (5.10) and defining

αi = df

dx

∣∣∣∣
x=x∗

i

, βij = ∂g(u, v)
∂u

∣∣∣∣
(u,v)=(x∗

i
,x∗
j
)
, γij = ∂g(u, v)

∂v

∣∣∣∣
(u,v)=(x∗

i
,x∗
j
)

(5.13)

we have, to leading order,

dεi
dt

=
[
αi +

∑
j

βijAij

]
εi +

∑
j

γijAijεj (5.14)

15The standard reference on nonlinear dynamics for the sciences is the textbook by S. Strogatz [4].
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which can be written in matrix form as

ε̇ = Mε (5.15)

where M has elements

Mij = δij

[
αi +

∑
r

βirAir

]
+ γijAij (5.16)

Next, write ε as a linear combination of the right eigenvectors er of M , which we assume is
diagonalisable:

ε(t) =
∑
r

cr(t)er (5.17)

Then (5.15) yields ∑
r

ċrer =
∑
r

µrcr(t)er (5.18)

where µr is the rth eigenvalue. According to the linear independence of the eigenvectors,

ċr = µrcr(t) ∀r (5.19)

which implies

cr(t) = cr(0)eµrt (5.20)

for each r. We see that if the real parts of all the eigenvalues are positive each of the cr and so ε
grow exponentially: a small perturbation from x∗ grows with time making the fixed point unstable
and ‘repelling.’ On the other hand, when all the eigenvalues have negative real parts, the cr and so
ε decays: the fixed point is stable and attracts nearby motions. If some µr have positive real parts
and others negative then there will be growth in some directions and decay in the other, a situation
known as a saddle point. Since stability necessitates the decay of a perturbation in any direction
from the fixed point, we reach the important conclusion that a fixed point is stable if the real parts
of all the eigenvalues µr are negative.16

5.2.2 Symmetrical Fixed Points and Special Cases

So far our discussion has been quite general. We now analyse a few particular cases in more detail.
The first assumption we make is that we have a symmetric fixed point, meaning x∗i = x∗ is the
same for each i. This satisfies (see (5.10))

f(x∗) +
∑
j

Aij︸ ︷︷ ︸
=ki

g (x∗, x∗) = f (x∗) + kig (x∗, x∗) = 0 (5.21)

16When all are non-positive but some vanish, it is necessary to work to higher order in ε to determine the stability.
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Since f (x∗) is a constant, for this to be satisfied for all i we must have f(x∗) = 0 and either ki = k
for all i (all nodes have the same degree) or g (x∗, x∗) = 0. We assume the latter – the case of a
k-regular graph is addressed in Example Sheet 1.

Having a symmetric fixed point simplifies the stability analysis greatly since the quantities αi,
βij and γij defined in (5.13) become index independent and the leading order expansion (5.14)
reads

dεi
dt

= (α+ βki) εi + γ
∑
j

Aijεj (5.22)

There are two special cases we consider:
1. g (xi, xj) = g (xj) depends on its second argument alone. Then β = 0 and

dεi
dt

= αεi + γ
∑
j

Aijεj (5.23)

or

ε̇ = (αI + γA) ε (5.24)

where A is the adjacency matrix and I the identity. Clearly an eigenvector of A with eigenvalue
κr is an eigenvector of (αI + γA) with eigenvalue α + γκr, so for stability, i.e. all the eigenvalues
(which are real) to be negative, we require

α+ γκr < 0 (5.25)

for all r. Since the A necessarily has both positive and negative eigenvalues (Section 5.1), we must
have α < 0. Then

γ > 0→ κr < −
α

γ
(5.26)

γ < 0→ κr > −
α

γ
(5.27)

The right-hand side of the first inequality is positive and the second negative, so these hold for all
r provided they hold for the most positive κ1 and most negative κn eigenvalues of the adjacency
matrix, respectively:

κ1 < −
α

γ
(γ > 0) and κn > −

α

γ
(γ < 0) (5.28)

These two conditions can be combined in
1
κn

< −γ
α
<

1
κ1

(5.29)

where α = f ′(x∗) and γ = g′(x∗). This is a single sufficient condition for dynamics about the fixed
point to be stable and is known as a master stability condition. It depends on both the nature of
the dynamics prescribed by the functions f and g as well as the structure of the network described
by the eigenvalues of A.

We can of course make use of what we know about about the eigenvalues of A. For example, κ1
is bounded below by both

√
kmax and 〈k〉, so in the case γ > 0 if one increases the mean degree or

maximum degree of the graph the system will eventually become unstable; there is a limit to the
connectively of a graph supporting stable motion.
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2. The coupling depends on its arguments in an antisymmetric way as g(xi, xj) = g(xi)− g(xj). In
this case γ = −β and

dεi
dt

= (α+ βki) εi − β
∑
j

Aijεj (from (5.14)) (5.30)

= αεi + β
∑
j

(kiδij −Aij) εj (5.31)

→ ε̇ = (αI + βL) ε (5.32)

and so stability is now controlled by the eigenvalues λr of the graph Laplacian:

α+ βλr < 0 (5.33)

Since the smallest eigenvalue of the graph Laplacian is always zero (Section 5.1) we must again
have α < 0 and the remaining eigenvalues satisfying

βλr < −α→
1
λr

> −β
α

(5.34)

which is true if the inequality holds for the largest eigenvalue λn, hence the master stability condition

1
λn

> −β
α

= − g′(x)
f ′(x)

∣∣∣∣
x=x∗

(5.35)

5.2.3 Multiple Variables Per Node

The basic ideas are the same when there are m variables per node, only the notation becomes more
cumbersome. A vector xi with components xiµ is assigned to each node obeying

ẋi = f(xi) +
∑
j

Aijg(xi,xj) (5.36)

where f and g are now vector valued functions. Again assuming a symmetric fixed point xi = x∗

and linearising with xi = x∗ + εi, we have, for each component εiµ of εi

dεiµ
dt

=
[
εi1
∂fµ(x)
∂x1

+ εi2
∂fµ(x)
∂x2

+ . . .

]
x=x∗

+
∑
j

Aij

[
εi1
∂gµ(u,v)
∂u1

+ εi2
∂gµ(u,v)
∂u2

+ . . .+ εj1
∂gµ(u,v)
∂v1

+ εj2
∂gµ(u,v)
∂v2

+ . . .

]
u=v=x∗

(5.37)

=
∑
ν

( ∂fµ(x)
∂xν

∣∣∣∣
x=x∗

+ ki
∂gµ(u,v)
∂uν

∣∣∣∣
u=v=x∗

)
εiν +

∑
j

Aijε
j
ν

∂gµ(u,v)
∂vν

∣∣∣∣
u=v=x∗

 (5.38)

=
∑
jν

[δij (αµν + kiβµν) +Aijγµν ] εjv 1 ≤ j ≤ n, 1 ≤ ν ≤ m (5.39)
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where we noted that j runs over the index labelling the nodes and ν the index labelling the variables
at each node, and defined the coefficients

αµν = ∂fµ (x)
∂xν

∣∣∣∣
x=x∗

, βµν = ∂gµ (u,v)
∂uν

∣∣∣∣
u=v=x∗

, γµν = ∂gµ (u,v)
∂vν

∣∣∣∣
u=v=x∗

(5.40)

We see that stability will be governed by the spectrum of some nm× nm matrix (writing (5.39) in
matrix form is a matter of concatenating the εi vectors to form a ‘super’ vector). We jump straight
to the two special cases considered above:

1. g(xi,xj) = g(xj)→ βµν = 0 ∀µ, ν and

dεiµ
dt

=
∑
jν

[δijαµν +Aijγµν ] εjν (5.41)

At each µ = 1, . . . ,m we can expand the vector17 εµ = (ε1µ, ε2µ, . . . εnµ) in terms of the eigenvectors
er of the adjacency matrix:

εµ =
∑
r

crµ(t)er i.e. εiµ =
∑
r

crµ(t)eir (5.42)

This expresses the perturbation in each variable xiµ as a linear combination of the eigenvectors
similar to before, only with a separate set of coefficients crµ for each type of variable. Substituting
we find ∑

r

dcrµ
dt

eir =
∑
rjν

[δijαµν +Aijγµν ] crν(t)ejr (5.43)

=
∑
rν

[αµν + κrγµν ] crν(t)eir (5.44)

Again note r ∈ {1, . . . , n} while ν ∈ {1, . . . ,m}. At each r we have

ċr = [α+ κrγ] cr (5.45)

where α and γ are mm × mm matrices18 with elements αµν and γµν , and cr = (cr1, cr2, . . . , crm)
(this is a vector in the sense xi is, not εµ). We we can view this vector equation, which captures
dynamics in the vicinity of the fixed point, as a decoupled set of n separate systems, one for each
eigenvector κr of the adjacency matrix. In order for the fixed point of the entire system to be stable,
each of these individual systems must be stable, meaning their eigenvalues need to have negative
real parts.

With this in mind define the master stability function σ(κ) to be the most positive real part of
an eigenvalue of α + κγ, where κ is a real variable. This function is straightforward to calculate

17This is a vector with components across the upper index i which enumerates the nodes, rather than a vector
across the lower index µ at fixed i (such as εi) which enumerates the variables at any particular node.

18These are just the Jacobian matrices of f and g, so it is unsurprising to see them in the equation determining
the stability of the fixed point.
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κ

σ

Σ

Figure 5.2: Sketch of a simple monotonic master stability function. At each eigenvalue κr of the adjacency
matrix (black dot) σ is negative, meaning the associated fixed point is stable. Equivalently, note that the
‘super master’ stability function, indicated here with a horizontal (red) line, has a negative value.

numerically: solving an eigenvalue problem has polynomial time complexity and at any rate m is
unlikely to be large. Overall stability then requires σ(κr) < 0 for each r or

Σ = max
r
σ (κr) < 0 (5.46)

Being droll, we might refer to Σ as a ‘super master’ stability function. A simple example is shown
in Figure 5.2.

2. g(xi,xj) = g(xi)− g(xj)⇒ γµν = −βµν . The analysis is the same, except starting from

dεiµ
dt

=
∑
jν

[δijαµν + Lijγµν ] εjν (5.47)

and resulting in

ċr = [α+ λrβ] cr (5.48)

so that the appropriate master stability function σ(λ) is the most positive real part of an eigenvalue
of α + λβ, and if this function is negative for all eigenvalues λr of the graph Laplacian the fixed
point is stable.

5.2.4 Limit Cycles and Synchronisation

An important possibility of we have not yet discussed is that of a limit cycle, a periodic motion
of the variables of the system which, like a fixed point, can be stable or unstable, attracting or
repelling. Naturally in a real system only stable limit cycles are observed, since for an unstable
cycle external perturbations, no matter how small, will always be destabilising and result in the
eventual breakdown of the periodic motion.

We are particularly interested in the phenomena of synchronisation, when a system of coupled
oscillators undergo periodic motion in union with each other – a special type of limit cycle where
it is not just the overall system that cycles through the same set of values, but also the variables
at each node, doing so in time with each other.
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In our study of the dynamical system

dxi

dt
= f(xi) +

∑
j

Aijg(xi,xj) (5.49)

on a network, the coupling between nodes is essential for the possibility of synchronisation. To see
this is the case, suppose Aij = 0 and that the equation

dxi

dt
= f(xi) (5.50)

has a periodic solution xi = s(t) such that s(t+ τ) = s(t) ∀t (the equivalent of a symmetric fixed
point for limit cycles). Then s(t + φ) is also a solution, for any value of φ. Consequently we can
have solutions of the form

xi = s(t+ φi) (5.51)

where φi has a different value for each i i.e. all nodes follow the same motion with the same period
but not, in general, in time with each other. This is intuitive: without interactions the oscillator at
one node has no no way of knowing what its neighbours are doing!

Now consider adding interactions, for simplicity in the form g(x,y) = g(x) − g(y) we have
considered several times already. Then xi = s(t) for all i is a solution of (5.49) (but xi = s(t+ φi)
isn’t), since

g(xi,xj) = s(t)− s(t) = 0 (5.52)

Thus we have a synchronised state where all nodes are following the same periodic motion and at the
same point in that motion at any given time. This is just one possible way in which synchronisation
can arise; we will see another in the form of the Kuramoto model in the next section.

The stability of a limit cycle can be analysed in a similar way to that of a fixed point. For our
simple synchronised state we write xi(t) = s(t) + εi and linearise (5.49) to obtain

dεiµ
dt

=
∑
jν

[δijαµν(t) + Lijβµν(t)] εjν (5.53)

as in (5.47), except now

αµν(t) = ∂fµ
∂xν

∣∣∣∣
x=s(t)

, βµν(t) = ∂gµ
∂xν

∣∣∣∣
x=s(t)

(5.54)

are evaluated at x = s(t) rather than x∗, and so are time-dependent. Moreover, they are periodic
with period τ . Repeating the steps in the analysis of above (expanding εµ = (ε1µ, . . . , εnµ) in the
eigenbasis of L), one obtains the matrix equation

dcr

dt
= [α(t) + λrβ(t)] cr(t) (5.55)

Due to the time dependence of the matrices α and β, the solutions for the coefficients crµ(t) are
no longer (in an appropriate coordinate system) simply exponential functions, making a complete
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analysis challenging. However, we can quite easily derive a sufficient condition for stability by
defining the stability function σt(λ) as the most positive real part of an eigenvalue of α + λβ at
time t. This varies with period τ and at any given time the stability calculation “σt(λr) < 0 ∀r?”
tells us whether the perturbations are decaying or growing at that instant. If σt(λr) is negative for
all r at all times then the cycle is certainly stable, hence the sign of the master stability functions

σ(λ) = max
t∈[0,τ ]

σt(λ), Σ = max
r
σ(λr) (5.56)

can be used to confirm the stability of a cycle: if Σ < 0 then the motion is stable, with perturbations
decaying in all directions at every point along the cycle. To reiterate, this is a sufficient condition,
not a necessary one: overall stability does not require that the system be instantaneously stable at
every moment. Indeed, it is possible for perturbations around the synchronised state to grow at
certain times, provided they decay (more rapidly) at others so that in total the motion is stable.
While it may be possible to obtain a stronger condition in certain cases, often one must resort to
numerical simulation in order to determine stability in a complex system.

6 Networks for the Minimisation of Spin Hamiltonians
Having studied the general features of dynamical systems on networks, we now examine three
specific networks that will be relevant to our proposed simulator i.e. the minimisation of the Ising
and XY Hamiltonians (repeated below for convenience). Referring back to Figure 1.1, this section
concerns the ‘mathematical model’ box and subsequent sections the physical realisation.

HXY = −
∑
ij

Jij cos (θi − θj) si = (cos θi, sin θi) , θi ∈ [0, 2π) (6.1)

HI = −
∑
ij

Jijsisj si ∈ {−1, 1} (6.2)

6.1 Hopfield
We consider a Hopfield network to be a network in which continuous inputs ui are related to an
output via a sigmoid function such as vi = g(ui) = tanh ui (Figure 6.1a). The dynamics are
normally prescribed for the input, which evolves as

dui
dt

=
∑
j

Jijvj − ui + hi (6.3)

where hi is an external field and Jij is symmetric. Observe that u̇i may be written as a gradient:

u̇ = −∂E
∂vi

or u̇ = −∇vE (6.4)

where

E = −1
2
∑
ij

Jijvivj +
∑
i

∫ vi

0
g−1(v)dv +

∑
i

hivi (6.5)
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We identify E as a energy (or, in the context of dynamical systems, a Lyapunov function), since it
is bounded below, monotonically decreasing and such that the system, via the equations of motions
(6.3), will evolve to one of its (possibly local) minima. To see this, note

d

dt

∫ vi(t)
g−1(v)dv = dvi

dt
g−1(vi) ≡

dvi
dt
ui (6.6)

hence

dE

dt
= −

∑
i

dvi
dt

∑
j

Jijvj − ui + hi

 (6.7)

= −
∑
i

dvi
dt

dui
dt

(6.8)

= −
∑
i

(
g−1)′ (vi)(dvi

dt

)2
(6.9)

≤ 0 (6.10)

Therefore u̇i = 0→ Ė = 0 and E is decreasing so the system evolves to attain a minimum of E.
You would have noticed that E is close to, but not quite, an Ising Hamiltonian. To remove the

anonymous integral terms, we rescale the argument of g using a positive parameter λ (Figure 6.1b)
as

vi = g(λui), λ > 0⇒ ui = 1
λ
g−1(vi) (6.11)

Taking λ→∞,

dui
dt

=
∑
j

Jijvj −
ui
λ

+ hi →
∑
j

Jijvj + hi (6.12)

and

E = −1
2
∑
ij

Jijvivj + 1
λ

∑
i

∫ vi

0
g−1(v)dv +

∑
i

hivi (6.13)

→ −1
2
∑
ij

Jijvivj +
∑
i

hivi (6.14)

and an Ising Hamiltonian emerges.
Hopfield networks provide a model for understanding human memory but for our purposes are

crucial to the operation of the coherent Ising machine discussed in Section 11. Note that although
the system will converge to a minimum of HI , we have not established a reason for it to converge to
a global one, and indeed one of the drawbacks of the Ising machine we discuss is that local minima
are likely to be found.
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u

g(u)

1

−1

g−1(v)

v1−1

(a)

u

g(λu)

1

−1
λ > 1

λ = 1

(b)

Figure 6.1: (a) Input-output relations for the Hopfield network and (b) scaling the input with λ > 1
results in a steepening of the output profile.

6.2 Kuramoto Model
The Kuramoto model describes a large number of coupled oscillators which tend to synchronise
(Section 5.2.4). Each oscillator is characterised by a phase θi and a intrinsic frequency ωi with
governing equations

θ̇i = ωi + K

N

∑
j

sin(θj − θi) (6.15)

where N is the total number of oscillators and K controls the strength of the sinusoidal couplings.
The collective dynamics of the entire population and conveniently described by a single complex

order parameter

r(t)eiφ(t) := 1
N

∑
j

eiθj(t) (6.16)

φ(t) defines the average phase and r the extent of phase coherence, with r → 0 and r → 1
corresponding to the limits of incoherent and coherent oscillation, respectively. Multiplying by
e−iθi , from the imaginary part

r sin(φ− θi) = 1
N

∑
j

sin(θj − θi) (6.17)

and so the equations of motion can be written

θ̇i = ωi +Kr sin(φ− θi) (6.18)
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in which each oscillator interacts with all others through the collective quantities r and φ only. A
positive feedback loop is evident in which, as r increases i.e. the population becomes more coherent
so does the strength of the coupling, tending to increase the coherence further.

Further details of the model are discussed in the second example sheet.19 Here we note that if
a steady state solution for the order parameter is sought where r(t) is a constant and φ(t) rotates
uniformly at frequency Ω, then moving to a coordinate system rotating at Ω we have φ ≡ 0 and
from the equation

θ̇i = ωi − kr sin θi (6.19)

we see that those oscillators such that ωi < Kr have the possibility of becoming phase locked
θ̇i = 0 → sin θi = Kr/ωi, which corresponds to rotation with a constant phase difference i.e.
coherent oscillation in the original frame. Meanwhile those oscillators with ωi > Kr have changing
phase and continue to drift around unit circle in the rotating frame. Thus, a state of partial
synchronisation. As K is increased more and more oscillators are recruited into the coherent pack,
until eventually r ≈ 1 in the steady state. In general there are (constant) phase differences between
the oscillators but in the case ωi = ω ∀i these are zero and for large enough coupling the system
can exhibit a perfectly synchronised state in the sense described in the previous section.

Finally, in the original form of the equation of motions (6.15) we recognise the XY Hamiltonian:

θ̇i = ωi −
∑
j

sin(θi − θj) (6.20)

= ωi + 1
2
∂

∂θ

∑
kj

Jkj cos(θk − θj) (6.21)

= ωi −
1
2
∂HXY

∂θi
(6.22)

In other words, the dynamics follow the gradient descent of the XY Hamiltonian such that the long
term steady state behaviour described above corresponds to a minimum of HXY.

6.3 Stuart-Landau Oscillators
We have now seen how both the Ising model and the XY Hamiltonian can be realised in the
dynamics of a network. The third model we look at, that of Stuart-Landau (SL), has the potential
to minimise both and captures the essential dynamics of the physical non-equilibrium systems we
consider for this purpose. The model describes the state of N oscillators φi = √ρieiθi with both
phase θi and occupation ρi via the coupled equations

ψ̇i =
(
γi︸︷︷︸
gain

non-linear dissipation︷ ︸︸ ︷
−|ψi|2

)
ψi +

∑
j

Jijψj︸ ︷︷ ︸
coupling

(6.23)

As indicated, the dynamics intrinsic to a single oscillator has both a positive and negative term, the
former corresponding to a gain and the latter a loss, specifically non-linear dissipation, controlling

19Extensive analysis of the model and Kuramoto’s original work may be found in Strogatz’s millennium review [5].
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the growth of ψi. Simple interactions between oscillators are described by the matrix Jij which we
assume to be real.

To analyse this system, multiply both sides of (6.23) by√ρie−iθi and separate real and imaginary
parts:

√
ρie
−iθi

(
1

2√ρi
ρ̇ie

iθi + i
√
ρiθ̇ie

iθi

)
= (γi − ρi) ρi +

∑
j

Jij
√
ρiρje

i(θj−θi) (6.24)

⇒ 1
2 ρ̇i = (γi − ρi) ρi +

∑
j

Jij
√
ρiρj cos (θi − θj) (6.25)

and

θ̇i = −
∑
j

Jij

√
ρj
ρi

sin(θi − θj) (6.26)

The phase equations look similar to the couplings in the Kuramoto model (6.15) (which we know
relate to HXY) except for the ratio of occupations

√
ρj/ρi. To address this, the gains γi should

be adjusted in order to drive all oscillators to the same occupancy ρth (the subscript abbreviates
‘threshold’). A simple scheme would have the gains vary according to

γ̇i = (ρth − ρi) γi (6.27)

such that ρi = ρth provides a fixed point at each i (Figure 6.2). Then (6.26) describes Kuramoto
oscillators whilst the value of ρth, known a priori (i.e. chosen), may be related to the gains and
couplings via (6.25) at threshold:

ρi = ρth ⇒ (γi − ρth) ρth + ρth
∑
j

Jij cos (θi − θj) = 0 (6.28)

⇒ ρth = γi +
∑
j

Jij cos(θi − θj) (6.29)

and so the total occupancy Nρth, which typically relates directly to a density or intensity (e.g. of
light emitted) in a real system, is

Nρth︸ ︷︷ ︸
fixed

≡
∑
i

ρi =
N∑
i=1

γi︸ ︷︷ ︸
controlled

+
∑
ij

Jij cos (θi − θj)︸ ︷︷ ︸
−HXY

(6.30)

Thus, if we can adjust the γi to minimise the total gain at fixed occupancy, −HXY is maximised
hence HXY minimised. One has the picture of increasing the gain from below the energy profile of
HXY (Figure 6.3); close to or at threshold the evolution of each phase follows the steepest descent to
a minimum of HXY. Establishing a procedure to do this – in particular to reach a global minimum
– is not trivial due to the dynamic character of the gains.20

20There are many clever proposals. A small parameter ε is normally inserted as γ̇i = ε(. . .) so that changes are
slow and the system has time to explore many minima. Noise may also be added to the SL equations (6.23) to
prevent the system from becoming stuck at a non-global minimum (by rendering such minima unstable).
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t

ρth ρi

γi

Figure 6.2: Density of a single oscillator with ψi(0) = 0 as the ith gain is varied. γi is adjusted according
to (6.27) so that the final value of ρi is ρth.

∑
i

γi

Figure 6.3: Minimising the gain to minimise HXY. Arrows indicate possible choices for increasing the
gain. Only some (one shown) will result in subsequent evolution to the ground state.
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t

G

Figure 6.4: Amplitude h(t) of the second resonant term in (6.23).

6.3.1 Second Resonance

Remembering that the Ising Hamiltonian can be obtained from the XY model in the limit that
θi becomes a discrete variable (Section 2.1), it is simple to augment the SL-model to realise HI

instead of HXY: add a conjugate term h(t)ψ∗i , known as a second resonance term, to the right-hand
side of (6.23). As the name implies, this results in a term of double frequency in the equations for
ρi and θi:

1
2 ρ̇i = (γi − ρi) ρi +

∑
j

Jij
√
ρiρj cos (θi − θj) + h(t) cos(2θi) (6.31)

and

θ̇i = −
∑
j

Jij

√
ρj
ρi

sin(θi − θj)− h(t) sin(2θi) (6.32)

The function h(t) is controlled to converge to some constant value G (Figure 6.4). At the fixed
point we then have the total long-time density

Nρth =
∑
i

γi +
∑
ij

[Jij cos (θi − θj) +G cos(2θj)] (6.33)

The effect of the second resonance term then is, for sufficiently large G, to restrict each θi to the
values 0 and π, since deviations from these values are now penalised. Consequently, we recover
an Ising Hamiltonian as cos(θi − θj) → cos θi cos θj = sisj . Successfully minimising the gain now
minimises HI .

One could instead envision adding a third or fourth etc. resonant term (ψ∗(n−1)
i for nth reso-

nance), resulting in the so-called Potts models where θi is restricted to q values. Realising higher
resonances in a physical system (i.e. pumping at qθi) is technologically challenging however.

That concludes are look at the SL model, which is applicable to a myriad of real systems. Indeed,
the majority of systems we investigate in subsequent sections will have SL oscillators at their core.

7 Physical Simulators: Equilibrium Systems
While later on we will focus on non-equilibrium systems, in particular for the purpose of construct-
ing a polariton graph simulator, it is worth addressing the role equilibrium systems may have in
simulations via the protocol of Quantum Adiabatic Optimisation (QAO), not least because this has
long been successfully implemented in a real device.
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H0 Hp

t > 0

Figure 7.1: In AQO the Hamiltonian perturbed adiabatically so that a system initially in the ground
state of H0 = H(0) arrives in the ground state of Hp = H(T ) after a time T .

7.1 Quantum Adiabatic Optimisation
Suppose there is a quantum Hamiltonian Hp whose ground state encodes the solution of some
optimisation problem and a second Hamiltonian H0 whose ground state is both known and easy to
prepare. For example, Hp could be a quantum version one of Ising Hamiltonians set out in Section 4
and H0 the same Hamiltonian but with identical short-range ferromagnetic couplings only.

The idea of QAO is to start with the system in the ground state of H0 and change the Hamilto-
nian from H0 to Hp over some time T (Figure 7.1). The quantum adiabatic theorem tells us that,
provided this is done slowly enough i.e. adiabatically,21 the system will remain in its instantaneous
eigenstate throughout the process and so arrive at the ground state of Hp at t = T .

Of course the crucial question is how slowly. It is typically found [6] that that the process needs
to be exponentially slow in the problem size n:

T = O
(
eαn

β
)

as n→∞ (7.1)

where α, β > 0 depend on the structure of the problem and the physical system in use. Naturally,
the hope is that these parameters are smaller than those for classical algorithms used to solve the
problem.

Exactly how to perform the adiabatic change e.g. tune the couplings Jij is an active area of
research. A simple scheme might have the Hamiltonian changing linearly:

H(t) =
(

1− t

T

)
H0 + t

T
Hp (7.2)

but this is not the only approach (Figure 7.2).
The ‘D-Wave Systems’ company have successfully implemented a form of AQO in superconduct-

ing integrating circuits, although the jury is still out as to whether this form of quantum computing
offers any speed-up over classical algorithms. Hence we are prompted to explore other possibilities.

21An adiabatic process is one (a series of sufficiently small perturbations) performed sufficiently slowly such that
the system remains in an instantaneous eigenstate at all times. Note that this is different from the use of the term in
classical statistical mechanics: the quantum definition is closer to the thermodynamic concept of quasistatic change
(infinitesimally close to equilibrium at every instant) and has no direct relation to heat exchange.
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u

s(u)

1

Figure 7.2: The Hamiltonian is generally changed according to

H(t) = (1− s(t/T ))H0 + s(t/T )Hp

where s is increasing on [0, 1]. Three different possibilities for this function are shown with the linear case
(7.2) in red.

8 Condensation in Physical Systems
In this section we investigate the phenomena of Bose-Einstein condensation. It is worth stepping
back to consider the nature of the systems considered in this course (Figure 8.1). We will start with
the equilibrium – atomic condensates – before making our way to exciton-polariton condensates,
which are out-of-equiiblrium systems with driving and dissipation, although in some sense not as
far from equilibrium as other lossy systems such as lasers.

We take a heuristic approach, seeking to understand the basis principles and develop an oper-
ational theory, not belabour the detailed many-body physics. We begin with an overview of the
length scales characterising different views of a gas.

8.1 Matter Fields
Refer to Figure 8.2. On one end of the spectrum we have the classical, mean field description of a
gas in terms of macroscopic (coarse-grained) variables such as ρ(x, t), v(x, t) and thermodynamic
variables of state (pressure, entropy etc.). On the other we have the quantum description where
the system is fully specified by a many-body wavefunction ψ(r1, . . . rN , t). The systems we study
will be quantum in nature, but at the same time well described by a macroscopic field of a single
spatial variable, due to the phenomenon of Bose-Einstein condensation.

Equilbrium
(Conservative)

Condensates in solid
state systems

Non-equilibrium
(Non-conservative)

Distance from
equilibirium

Atomic
Condensates

Exciton-polariton,
magnon condensates

Figure 8.1: Range of systems considered in this course and several examples (top). Equilibrium systems
are conservative with respect to energy and particle number, non-conservative systems are not. In between
the two extremes are a range of near- and out-of-equilibrium systems.
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Micrscopic region of gas
particle spacing ∼ d

d

λB

zoom out
(coarse grain)

zoom in
(quantum)

Classical description
(continuum approximation)

d� L

Length scale
of interest

ρ(x, t), v(x, t) de Broglie wavelength
λB ∼ T−1/2

Quantum description
ψ(r1. . . . , rN , t)

Figure 8.2: Length scales in descriptions of a gas.

vv0

(a)

vv0

(b)

Figure 8.3: (a) The experimental signature of Bose-Einstein condensation is a sharply peaked velocity or
momentum distribution as many particles occupy the same quantum state. (b) This is in contrast to the
broad statistical distribution (Maxwell-Boltzmann) of a thermal gas.

8.2 Bose-Einstein Condensation
Two important parameters in a system of bosons (particles allowed to share the same quantum
state) are the inter-particle spacing d and thermal de Broglie wavelength λB , which is roughly the
average de Broglie wavelength of the particles at a given temperature.22 It is observed that, below
a critical temperature Tc at which λB ∼ d, the ground state becomes macroscopically occupied
meaning many N � 1 particles occupy the lowest energy quantum state (Figure 8.3). One can
imagine that, as λB ∼ d, the wavefunctions of individual particles overlap in space to produce a
single, coherent matter wave (collective mode). This state of matter, the Bose-Einstein condensate,
can consequently be described by a single field or wavefunction ψ(r, t).

22For more on particle statistics and wave-particle duality, consult any introductory quantum mechanics textbook.
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8.3 Modelling Atomic Condensates
8.3.1 The Gross-Pitaevskii Equation

Atomic condensates at ultracold temperatures (T � Tc) can be accurately described by a com-
plex order parameter or condensate wavefunction ψ(r, t) which is the solution to the non-linear
Schrödinger equation (NLSE)

i~
∂ψ(r, t)
∂t

=
(
− ~2

2m∇
2 + V (r, t) + U0|ψ(r, t)|2

)
ψ(r, t) (8.1)

where V (r, t) is the external, trapping potential and U0 > 0 (U0 < 0) a repulsive (attractive)
contact potential. The latter models pairwise interactions between particles in the condensate as

U (r1 − r2) = U0δ(r1 − r2) (8.2)

This is a reasonable approximation for the actual interactions provided the condensate gas is di-
lute, meaning d, λB � as where the s-wave scattering length as offers an effective length scale of
interactions.

(8.1) known as the Gross-Pitaevskii Equation (GPE) equation and is found to model a large
variety of systems not limited to condensates (e.g. plasmas and water waves). We reason it at a
phenomenological, mean-field level, as arising from the time-dependent variational principle applied
to the energy functional

E =
∫ {

~2

2m |∇ψ|
2 + V |ψ|2 + U0

2 |ψ|
4
}
dr → i~

∂ψ

∂t
≡ δE[ψ,ψ∗]

δψ∗
(8.3)

The terms of E describe kinetic, potential and interaction energies respectively. In the case V (r, t) =
V (r) is time-independent, E is conserved. The modulus squared |ψ|2 has the interpretation of the
particle density n(r, t) so that ∫

|ψ|2dr = N (8.4)

describes the total number of particles in the condensate and mN its mass, with N taken to be
fixed and large. Moreover, the condensate is ascribed a momentum

p = i~
2

∫
{ψ∇ψ∗ − ψ∗∇ψ} dr, (8.5)

and this is also conserved (refer to the second example sheet).

8.3.2 Hydrodynamic Description

Frequently it is useful to write ψ in polar form ψ(r, t) =
√
n(r, t)eiS(r,t) (in this context referred to

as the Madelung transformation), where in addition to the density we now have the phase S(r, t)
with which is associated a flow velocity

v = ~
m
∇S (8.6)

40



8 Condensation in Physical Systems Hybrid Photonics Computing

in line with the definition of current in single-particle quantum mechanics.
There is a nice analogy for BEC with inviscid, irrotational fluid flow, as seen from substituting

the Madelung transformation into the GPE (8.1) and separating real and imaginary parts (Ap-
pendix B):

∂n

∂t
+∇ · (nv) = 0 (8.7)

m
∂v

∂t
= −∇

(
1
2mv

2 + V + U0n−
~2

2m
∇2√n√

n

)
(8.8)

which are just the Euler equations with an anomalous ‘quantum pressure’ term. A quantum addition
is also manifest in the energy of the flow∫ {

~2

2m
(
∇
√
n
)2︸ ︷︷ ︸

Quantum KE

+ 1
2mnv

2︸ ︷︷ ︸
Classical

KE

+ V n︸︷︷︸
PE

+ U0

2 n2︸ ︷︷ ︸
Interaction
energy

}
dr (8.9)

8.3.3 Stationary Solutions

Assuming a time-independent potential, looking for stationary solutions ψ(r, t) = ψ(r)e−iµt/~ to
(8.1) we can derive a time-independent GPE

µψ = − ~2

2m∇
2ψ(r) + V (r)ψ(r) + U0|ψ|2ψ(r) (8.10)

The constant µ is known as the chemical potential and has the interpretation of energy per particle
added to the condensate, as seen by multiplying (8.10) by ψ∗(r) and integrating over r:

µ

∫
|ψ|2dr =

∫ {
~2

2m |∇ψ|
2 + V |ψ|2 + U0|ψ|4

}
dr (8.11)

⇒ µ = 1
N

(EK + EP + 2Eint) (8.12)

In fact, continuing from our reasoning for the GPE we can see the time-independent GPE as arising
from the minimisation of E subject to a constant number of particles:

δ

δψ∗
[E − µN ] = 0 → δE

δψ∗
= µ

δ

δψ∗

∫
ψψ∗dr = µψ (8.13)

where µ has the role of a Lagrange multiplier, consistent with the definition of the chemical potential
in field theories.

In summary, the GPE is used to model a coherent state of a large number of identical bosons,
suitable in the dilute (as � d) case at ultracold temperatures (T � Tc → N � 1). Before
addressing how such conditions may be achieved in experiment, we look at solutions to the time-
independent GPE for several simple systems.

8.3.4 The Thomas-Fermi Approximation, Healing Length and Harmonic Traps

1. Uniform condensates.
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Firstly setting V ≡ 0, (8.10) admits a constant solution ψ = ψ0 where

µψ0 = U0ψ
3
0 ⇒ ψ0 =

√
µ

U0
(8.14)

More generally, the phase of ψ is an arbitrary constant and

|ψ| = ψ0 =
{ √

µ−V
U0

if µ− V > 0
0 otherwise

(8.15)

Despite its simplicity a constant solution is the first port of call in the presence of strong
repulsive interactions or far from an external potential capable of producing changes in ψ since
in these situations a constant is likely the minimiser of the energy (8.3) (the kinetic energy term
is always positive, so ψ will not vary unless there is good reason for it to do so viz. an external
potential that favours certain spatial configurations).

2. Condensate in a one dimensional well.
In a setup likely familiar from single-particle quantum mechanics,23 we take

V =
{

0 0 < x < L
∞ otherwise (8.16)

where the well length L � ξ where ξ is a length scale over which the condensate can vary which
we will define in a moment.

Far away from the edges then we expect a uniform solution ψ = ψ0 and a density n0 = µ/U0 as
above. Within ∼ ξ of either edge the gradient term cannot be ignored however as ψ must decrease to
0 at each edge (where V =∞). The standard way to proceed with the remaining time-independent
GPE (V = 0, µ = n0U0)

n0U0ψ = − ~2

2m
d2ψ

dx2 + U0n0ψ (8.17)

is to introduce a dimensionless condensate function f which changes over distances of order unity
via ψ(x) = ψ0f(x/ξ) = ψ0f(u):

− ~2

2mU0n0ξ2 f
′′(u) +

(
f2 − 1

)
f = 0 (u = x/ξ) (8.18)

Allowing us to identify the length scale in the problem

ξ2 = ~2

2mU0n0
(8.19)

This is known as the coherence or healing length since it characterises the distance over which ψ
can change in response to a perturbation. We are left with the dimensionless form

−f ′′ +
(
f2 − 1

)
f = 0 (8.20)

23In the limit of negligible interactions U0 ∼ 0 the GPE reduces to the usual Schrödinger equation and so we get
the familiar result ψ ∼ sin

(
nπx
L

)
for a quantum particle in a box.
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∞ ∞

0 L

ξ

Figure 8.4: Condensate in a one dimensional well. Appreciable changes of ψ occur within ∼ ξ of either
edge only.

You can check f(u) ∼ tanh
(
u/
√

2
)
satisfies this equation and that the particular solution with

boundary conditions f(0) = f(L/ξ) = 0 and f → 1 near the centre of the well is

f(x/ξ) =


tanh

(
x
ξ
√

2

)
0 < x < L

2

− tanh
(
x−L
ξ
√

2

)
L
2 < x < L

(8.21)

In other words, ψ = ψ0 tanh
(
s/
√

2ξ0
)
where s is the distance from either edge, with ψ ∼ ψ0 for

s� ξ as expected (Figure 8.4).

3. Condensate in a harmonic potential.
We address the case of a harmonic potential which is applicable to the confinement of atomic

condensates by magnetic traps (Section 8.4). In three dimensions,

V (r) = m

2 ω
2
rr

2 r2 = x2 + y2 + z2 (8.22)

Firstly, in the absence of interactions we have the Schröndinger equation for the quantum harmonic
oscillator (except with µ in place of E)

µψ = − ~2

2m∇
2ψ + 1

2mω
2
rr

2ψ (8.23)

which we know (or are told) has ground state

ψ(r) =
√
N

π3/4`
3/2
r

e−r
2/2`2

r (8.24)

where we note the Gaussian is normalised to N , not 1, and

`r =
√

~
mωr

(8.25)

is a characteristic length scale of the oscillator, obtained via similar analysis to that used to deduce
ξ above (set KE ∼ PE). The chemical potential is easily read off from

− ~2

2m∇
2ψ + 1

2mω
2
rr

2ψ = 3~2

2m`2r
ψ = 3

2~ωr︸ ︷︷ ︸
µ

ψ (8.26)
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r

V (r)

RTF

|ψ|2 (TF)

Figure 8.5: The TF approximation for a strongly interacting condensate in a harmonic trap. The actual
condensate profile (determined numerically) is indicated with a dashed line.

corresponding to an energy

E = Nµ = 3
2N~ωr (8.27)

of the condensate in the trap.
The other regime in which we can get analytic results is that of strong repulsive interactions,

which for this problem means that the ‘interaction parameter’ Nas/`r satisfies

Nas
`r
� 1 (8.28)

Neglecting the gradient term we get a solution of density

|ψ|2 =
{

2µ2−mω2
rr

2

2U0
if 2µ < mω2

rr
2

0 otherwise
(8.29)

which, since the potential is changing, is not just a constant (Figure 8.5). Neglecting the kinetic
energy in this way is known as the Thomas-Fermi (TF) approximation, and

RTF =
√

2µ
mω2

r

(8.30)

the TF radius.

8.4 Preparing Atomic Condensates
There are two main steps in preparing an atomic condensate. Firstly, laser or doppler cooling is
used to cool the gas down to temperatures in the µK range (Figure 8.6a). During this time the gas
is confined by a magnetic trap.

Laser cooling alone cannot produce the nK temperatures required for condensation in an atomic
gas, however.24 Instead, the cooling lasers are turned off and the trapping steadily potential reduced:
as the depth of the potential decreases the most energetic particles are able to escape the trap,

24This is due to the ‘recoil-limit’. M. Fox provides an excellent introduction to cooling, trapping and BEC in his
textbook on Quantum Optics [7].
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Figure 8.6: (a) Doppler cooling. In a magneto-optic trap three pairs of counter propagating laser beams
annul atom velocities in the x,y and z directions whilst a magnetic field generated by current carrying coils
confines the atoms to a small region at the intersection of the beams. (b) Evaporative Cooling. The laser
beams are switched off and the height of the magnetic trap reduced, allowing the most energetic atoms to
escape and reducing the temperature further. After Fox [7].

leaving behind the slow moving, low energy ones which thus form a gas of reduced temperature.
This is known as evaporative cooling (Figure 8.6b).

A typical atomic BEC experiment may be performed at temperatures ∼ nK with condensates
of anywhere from 103 to 109 atoms confined to a region of size ∼ 10µm. Isotopes of alkali metals,
such as 87Rb or 23Na, are commonly used.

9 Optical Lattices
The standing wave pattern generated by the inference of counter propagating laser beams may be
used to trap neutral atoms in a structure know as an optical lattice (Figure 9.1). These struc-
tures have potential uses in quantum information processing and, our favourite subject, quantum
simulation.

Lattice
Height

Θ1 Θ2 Θ3
Jij

a

Figure 9.1: Optical Lattice. In a tight-binding approximation, a condensate is localised at each site of
the lattice with interactions between neighbours.
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9.1 Tight Binding
In an optical lattice the spatially dependent intensity described by the inference pattern of laser
beams induces a spatially dependent potential energy for ultracold neutral atoms via the AC-Stack
effect. This potential is ideal (lossless) and in simple cases has a sinusoidal form, for example

V =
∑

`=x,y,z
V0,` sin2

(
π`

a

)
(9.1)

with atoms confined to the minima of this function. The two key parameters the lattice are its
periodicity, controlled by the lattice constant a (half the laser wavelength), and its height, dictated
by the magnitude of V .

When the depth of each well is not too large, atoms readily move between minima via quantum
tunnelling and interact, resulting in coherence across the entire lattice and a superfluid-like state.
If the depth of each well is increased, the atoms become increasingly localised at the minima and
the system transitions into a Mott insulator state.

In the regime of large lattice height we can use a tight-binding approximation, writing the total
N atom condensate ψ(r, t) as a sum over single atom condensates at each site of the lattice Ri,
with time-dependent coefficients:

ψ(r, t) =
√
N
∑
Ri

ϕi(t)Θ(r −Ri) (9.2)

where ∫
|Θ|2dr = 1 (9.3)

i.e. Θ is a solution to the GPE with N = 1 (which we assume is known), and

ϕi(t) =
√
ni(t)eiθi(t) ni = Ni

N
(9.4)

with Ni the number of particles at the ith site.
The tight-binding approximation at lowest order consists of this ansatz together with the pre-

scription that interactions between sites due to the kinetic (∼ ∇2) and potential (∼ V ) terms of
the GPE arise for nearest neighbours only, whilst the overlap between wavefunctions at different
sites is (otherwise) negligible.25 The details are worked out in Example Sheet 2; from the GPE one
obtains

i~
∂ϕi
∂t

= −K
(
ϕi−1 + ϕi+1

)
+
(
εi + U |ϕi|2

)
ϕi (9.5)

where, denoting Θi(r) ≡ Θ(r −Ri),

K = −
∫ [

~2

2m∇Θi · ∇Θi+1 + ΘiVΘi+1

]
dr (9.6)

25Some intuition I find helpful: in Figure 9.1 it is clear that Θ1 and Θ2 have no overlap (when one is non-zero the
other is zero), but the integral of Θ1Θ2 weighted by the potential V may be non-zero, since V overlaps with both Θ1
and Θ2 (gradient overlap is similarly plausible, although the diagram is not drawn accurately enough to reflect this).
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is the nearest-neighbour tunnelling rate,

εi =
∫ [

~2

2m (∇Θi)2 + ΘiVΘi

]
dr (9.7)

are on-site energies and

U = U0

∫
Θ4dr (9.8)

This is the lowest order discrete non-linear Schrödinger equation (DNSLE).

9.2 Realising the XY Hamiltonian
Including long-range interactions, the DNSLE (9.5) generalises to

i~
∂ϕi
∂t

= −
∑
j

Jijϕj +
(
εi + U |ϕi|2

)
ϕi (9.9)

which looks very similar to our equations for a system of SL oscillators (6.23), albeit with imaginary
time dynamics. It should come as no surprise then that, if an equal number of atoms are loaded at
each lattice site, the ground state of this equation realises the minimum of the XY Hamiltonian:

i~
∂ϕi
∂t

= δE

δϕ∗i
= δ

δϕ∗i

∫
Hdr = ∂H

∂ϕ∗i
(9.10)

where

H = −1
2
∑
ij

Jijϕiϕ
∗
j +

∑
i

[
εi|ϕi|2 + U

2 |ϕi|
4
]

(9.11)

= −1
2
∑
ij

Jijρ cos (θi − θj)︸ ︷︷ ︸
HXY

+
∑
i

(
εi + U

2 ρ
)
ρ︸ ︷︷ ︸

some constant

(9.12)

with ρ the constant density at each site.
A quantum annealing protocol not too dissimilar from that discussed in Section 7.1 (perhaps

involving diabatic change to an extent) may be used to tune the precise couplings Jij from a simpler
Hamiltonian e.g. with antiferromagnetic interactions only.

10 Polariton Condensates
Polaritons are quasi-particles that result from the strong coupling between photons and electronic
excitations (electron-hole bound states) in a semiconductor known as excitons. Informally, a photon
can be absorbed to create an exciton, which subsequently relaxes to emit a photon, which can go
on to create another exciton, and so on. In the strong coupling regime this reversible process occurs
so rapidly that the normal modes of the systems are not excitons or photons, but superpositions of
these i.e. polaritons.
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10.1 Condensation
At low enough densities, polaritons behave as bosons and may exhibit Bose-Einstein condensation26
and associated phenomena such as long range phase coherence, superfluidity and pattern formation.
That the effective mass of polaritons is typically far smaller than atomic mass (they are ‘part matter
part light’) means that condensation can occur at relatively high temperatures (K rather than µK)
– in some cases, even at room temperature. The condensates formed are dilute, weakly interacting
Bose gases with a contact interaction Uδ(r) of the kind we have been considering (describing
polariton-polariton interactions).

In order to actually observe condensation, it is necessary to confine photons in a microcavity
with excitons (bound in quantum wells) at the anti-nodes of the light modes. This facilitates
strong couplings and allows the polaritons to survive long enough to cool and condense. Key in
the description of microcavity polaritons is their dispersion, which has two branches as shown in
Figure 10.1. Note that, due to their confinement, photons in the cavity have a non-zero effective
mass. For a high quality cavity, order of magnitude estimates are

mpho. ∼ 10−4me, mpol. ∼ 2mpho., U0 ∼ 10−3meV(µm)2 (10.1)

with polariton lifetimes of 5 − 10ps. Polaritons also have two possible polarisation states (see
Example Sheet 3), but often this degree of freedom can be ignored in a real experiment.

10.2 Injection
Due to imperfect confinement of the photon component (the cavity mirrors are not perfect re-
flectors), polaritons have a finite lifetime and have to be continuously repopulated. In this way
polariton condensates are non-equilibrium steady states emitting coherent light, lying somewhere
between an equilibrium BEC and a laser. Although losses from the cavity (photon emission) are
not ideal, they are also the means by which measurements of the condensate can be obtained,
namely via the emission angle of the outgoing photons which corresponds to the conserved in-plane
momentum.

There are several ways in which the system can be pumped i.e. polaritons injected into the
condensate. The key distinction is whether the pumping is coherent or incoherent. In the former
case, the phase of the pump laser is imparted to the condensate, whereas it is not in the case
of incoherent pumping, typically due to a multitude of small scattering events between injection
and the final low momentum state of the polariton (Figure 10.2). We will be most interested in
incoherent pumping at high energies.

26A technicality here is that true BEC does not occur in two dimensional systems (as we consider), at least not if
they are infinite. However for finite systems in d = 2 with a suitable trap the principal features of condensation are
recovered. The review by J. Keeling and Natalia [8] provides an accessible introduction to the phenomenology.
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E (meV)

k‖ (µm−1)

UP

LP

Photon

Exciton

Figure 10.1: Sketch of the upper (UP) and lower (LP) branches of the dispersion relation for polaritons in a
microcavity. This is obtained by solving the Schröndinger equations for coupled and photon wavefunctions:

ELP, UP
k = 1

2

(~ω0 + ε+ ~2k2

2m

)
∓

((
~ω0 − ε+ ~2k2

2m

)2

+ g2

)1/2


where k is the in-plane polariton wavevector, ~ω0 the energy of the bottom of the photon band, ε the bare
exciton energy and g the photon-exciton conversion rate (at resonance, ε = ~ω0) [8].
The photon and exciton dispersions are indicated with a dashed line. The latter is essentially flat due to
the large mass of the electron compared to mpho., mpol. (recall large effective mass ↔ small curvature).

Losses
(photon emission)

E (meV)

k‖ (µm−1)

LPPump

Pump

Figure 10.2: Injection into the LP branch may be coherent or incoherent. For example, polaritons may
be injected coherently at a ‘magic-angle’ or momentum (right) from which they can scatter into one zero
and one high momentum state in a single event. Alternatively, polaritons may be injected incoherently
at higher energies (left), subsequently relaxing towards a low momentum state via many scattering events
(phonon emission).
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10.3 Modelling Polariton Condensates
10.3.1 The Driven Dissipative GPE

We have discussed how polariton condensates are non-equilibrium steady states. Building on our
model of atomic condensates, we add imaginary terms describing pumping and dissipation to the
GPE:

i~
∂ψ

∂t
=
(
− ~2

2m∇
2 + V + U0|ψ|2

)
ψ + i

[
Pinc.(r)− γc − σ|ψ|2

]
ψ (10.2)

As before the first three terms of the right-side are associated with kinetic energy, an external
potential and a contact interaction. The polariton experiments we are interested in are performed
using clean (ordered) materials without trapping potentials in which case V is negligible.

Amongst the new terms, Pinc.(r) is an incoherent pump field which populates the condensate
without fixing its phase; Pinc.ψ is replaced by iPcoh.e

−ωpt in the case of coherent pumping at
frequency ωp. The coefficients γc and σ annotate linear and non-linear losses, respectively. The
former is associated with photon decay and the latter with inelastic scattering with the pump and
the depletion of the exciton reservoir (Section 10.3.4). Fundamentally, non-linear losses must be
present to an extent otherwise the system would be unstable to runaway condensate growth as soon
as Pinc. exceeded κ.

10.3.2 Steady State Outflow

Unlike equilibrium condensates, polariton condensates have steady outflows of particles maintained
by the pumping. This is important as the primary mechanism by which condensates can interact
over relatively long distances as is essential for our purposes. Assuming a basic Gaussian pumping
profile Pinc. = p0e

−αr2 in two dimensions, we can determine a characteristic outflow velocity for
a single condensate. Note that to produce multiple condensates in a graph, a device known as a
spatial light modulator (SLM) is used to pump at precise locations in the 2D plane.

We look for stationary solutions ψ(r, t) = ψ(r)e−iµt to the driven dissipative GPE:

µ~ψ =
(
− ~2

2m∇
2 + V + U0|ψ|2

)
ψ + i

[
Pinc.(r)− γc − σ|ψ|2

]
ψ (10.3)

As was done for the ordinary GPE (Section 8.3), we use the Mandlung transformation ψ =
√
neiS

obtaining, from the imaginary part,27

∇ · (nv) = − (Pinc. − γc − σn)n (10.4)

Away from the pumping spot we can neglect Pinc. and non-linear losses, leaving

∇ · (nv) = −γcn (10.5)

On account of the pumping profile, the problem is circularly symmetric so that v = u(r)r̂ where r̂
is the radial unit vector and

1
r

d(rnu)
dr

= −γcn (10.6)

27Compared to the analysis in Appendix B we have µ
√
neiS on the left-hand side instead of i~ψ̇ (which upon

cancelling eiS is real) and the three new terms ∝ in on the right (having multiplied by
√
n). Hence the absence of

ṅ and the addition of (Pinc. − γc − σn)n in (10.5) compared to (8.7).
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n

u∞

Pinc.

r

Figure 10.3: Pumping, density and velocity profiles for a single condensate with Gaussian pumping.

On the other hand, resolving the real part gives (cf. (B.9) with V = 0),

~µ = − ~2

2m

(
∇2√n√

n
− (∇S)2

)
+ U0n (10.7)

= ~2

2mu(r)2 + U0n (10.8)

where we neglected the kinetic term in a TF approximation. As r →∞ we expect the density n to
decay, meaning we must have u→ u∞ such that

u2
∞ = 2mµ

~
(10.9)

and so the characteristic outflow velocity is fixed by the chemical potential. The associated wavector
kc = mu∞/~ is the radius of the circle described by the outflow in Fourier space. In view of these
asymptotics we can approximate u ∼ u∞ tanh(`r) where ` is the distance over which the velocity
profile changes.

Returning to (10.6), for large r we have

∂(rn)
∂r

≈ −γcnr
u∞

(10.10)

⇒ 1
n

dn

dr
≈ −1

r
− γc
u∞

(10.11)

and so the decay of the condensate density follows

n(r) ∼ 1
r

exp
(
− γc
u∞

r

)
(10.12)

A complete analytical expression for n(r) is derived in [9] using asymptotic matching. The predicted
forms of n(r) and u(r) are sketched alongside the pumping profile in Figure 10.3.

10.3.3 Condensate Coupling: Polariton Multiplets
In a graph of two or more polariton vertices (i.e. pumping centres) the principle governing the
coupling established between the condensates is that

Polariton condensation occurs at the phase-configuration that carries the highest occu-
pation M =

∫
|ψ|2dr.

This is due to the phenomena of stimulated relaxation in bosonic systems: the probability for a
particle to relax in a particular state grows with the population of that state.28
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d

(a)
n

(b)

n

(c)

Figure 10.4: A polariton dyad. (a) Two pumping spots separated by d. The origin of our coordinate
system is placed between the two centres. We expect either (b) destructive or (c) constructive interference.

We apply this principle explicitly to the case of two coupled condensates (Figure 10.4). In
particular, we are interested in what determines whether there is destructive (π phase difference,
antiferromagnetic coupling) or constructive (0 phase difference, ferromagnetic coupling) between
the condensates.

We approximate the wavefunction (stationary solution) for the entire system as

ψ = ψ0

(
r + d

2

)
+ ei∆θψ0

(
r − d

2

)
(10.13)

where ψ0 is the wavefunction for a single condensate and ∆θ the phase difference. Using Plancherel’s
theorem, we can express the total occupation in terms of the Fourier transform ψ̂0(k) of a single
condensate:

M =
∫

d2k

(2π)2 |ψ(k)|2 (10.14)

=
∫

d2k

(2π)2 |ψ0(k)|2
∣∣∣eik·d/2 + ei∆θe−ik·d/2

∣∣∣2 (10.15)

=
∫

d2k

(2π)2 |ψ0(k)|2 [2 + cos(k · d−∆θ)] (10.16)

= 2
∫

d2k

(2π)2 |ψ0(k)|2 + cos ∆θ 1
2π2

∫
|ψ̂0(k)| 2 cos(k · d)d2k (10.17)

where the integral over sin(k · d) vanished since this is odd under k→ −k whilst ψ̂0(k) is even. In
the first term we recognise the occupation of a single condensate in isolation:∫

d2k

(2π)2 |ψ̂0(k)| 2 =
∫
|ψ0(r)|2dr = M0 (10.18)

28The effect of Bose stimulation (transition rates to a state of N bosons are proportional to N + 1 [10]) is most
familiar in the operation of an optical laser (stimulated emission).
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J0(kr)

kr

Figure 10.5: The sign of J0(kr) at kr = kcd determines whether there is a ferromagnetic (blue) or
antiferromagnetic (red) coupling.

and in the second the Fourier transform of |ψ̂0(k)| 2:

1
2π2

∫
|ψ̂0(k)| 2 cos(k · d)d2k = 1

2π2F
(
|ψ̂0(k)| 2

)
(10.19)

where again there is no component ∝ sin(k · d) since |ψ̂0(k)| 2 is even. Moreover, for the pumping
profile we have considered this function is circularly symmetric, meaning its Fourier transform can
be written as to 2π times its Hankel transform of order zero:

F
(
|ψ̂0(k)| 2

)
= 2π

∫ ∞
0
|ψ̂0(k)| 2J0(kd)kdk (10.20)

where J0 is the zeroth-order Bessel function of the first kind. As ψ0 is sharply peaked in Fourier
space at the characteristic wavevector kc, we can approximate

|ψ̂0(k)| 2 ≈ |ψ̂0(kc)|
2
δ(k − kc)→ F

(
|ψ̂0(k)| 2

)
≈ 2π|ψ̂0(kc)|

2
J0(kcd)kc (10.21)

All together, we have

M = 2M0 + J cos ∆θ (10.22)

where M0 is a constant and

J = 1
π

∫ ∞
0
|ψ̂0(k)| 2J0(kd)kdk ≈ kc

π
|ψ̂0(kc)|

2
J0(kcd) (10.23)

Hence, the preferred phase is determined by where kcd sits in relation to the zeros of the Bessel
function (Figure 10.5): if J0(kcd) > 0 then ∆θ = 0 maximises M and we have a ferromagnetic
coupling J > 0, whereas if J0(kcd) < 0 it is ∆θ = π that is favoured and J < 0.

The upshot is that the coupling between two condensates can be controlled via pumping and in
particular the distance between pumped spots. For Q condensates, the generalisation of (10.22) is

M =
∫ ∣∣∑

i

ψ0(|r − ri|)
∣∣2dr = QM0 +

∑
ij

Jij cos(θi − θj) (10.24)
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dij

Jij

Figure 10.6: A primitive polariton graph simulator where the coupling between nodes is controlled by
pumping spot characteristics and separation. We will see below that geometry alone is not sufficient to
produce arbitrary couplings and more sophisticated pumping techniques may be required in order to avoid
polariton-exciton interactions.

with Jij ∝ J0(kcdij) (dij = |ri − rj | the distance between the ith and jth condensates). Then, that
the system maximises M implies it minimises

−
∑
ij

Jij cos(θi − θj) = HXY (10.25)

We have now seen all the basic ingredients of a polariton graph simulator (Figure 10.6):
• Map an optimisation problem to coupling strengths of an XY Hamiltonian

• Arrange polariton vertices in a graph with distances dij in accordance with these couplings

• Let the polaritons condense

• Read out the phases θi which describe min
θi

HXY and so a solution to the original problem

10.3.4 Coupled Polariton-Excition Reservoir System

Polariton condensation is in fact a two step process, involving
1. The population of a reservoir of ‘hot’ excitons, and

2. Scattering from the reservoir to the condensate
A more accurate model, which reflect these steps, is of a condensate evolution equation

i~
∂ψ

∂t
= − ~2

2m∇
2ψ + U0|ψ|2ψ + ~gRnRψ + i~

2 (RRnR − γc)ψ (10.26)

coupled to the rate equation for the density of the exciton reservoir nR(r, t):
∂nR
∂t

= −
(
γR +RR|ψ|2

)
nR + P (r) (10.27)

where, in addition to those terms we have seen before, γR annotates linear dissipation of nR,
RR captures scattering into the condensate and gR is the strength of repulsive polariton-exciton
interactions.

We now look at the how this system can be analysed with a tight-binding approximation in
several regimes, and comment on the implications for our polariton graph simulator.
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10.3.5 Tight-binding in a Polariton Network

We choose units such that ~ = 1 and de-dimensionalise the above system such that

iψ̇ = −∇2ψ + |ψ|2ψ + gnRψ + i

2 [nR − 1]ψ (10.28)

ṅR = −
(
b0 + b1|ψ|2

)
nR + P (10.29)

This involves introducing a length scale r → `0r and rescaling ψ, t and other coefficients (we do
not concern ourselves with the details but note that gR → g and the new coefficients b0, b1 will be
set by the properties of the physical system). Next we make the ansatz

ψ(r, t) =
∑
i

ai(t)ϕi(ri) (10.30)

P (r, t) =
∑
i

fi(t)pi(r) (10.31)

nR(t, t) =
∑
i

κi(t)ni(ri) (10.32)

where ϕi(r) ≡ ϕ(|r − ri|) is the wavefunction of an isolated condensate at r = ri such that∫
|ϕi|2dr = 1 and pi, ni are pumping and densities at ri compatible with this normalisation.

The idea with the above substitution is that we want to reduce the spatially dependent pair of
equations for the entire system to a set of simpler, spatially independent and identical coupled
pairs of equations, one for each node (oscillator) of the network.

Multiplying (10.28) by ϕ∗i , (10.29) by |ϕi|
2 and integrating over the entire system subject to

i 6= j ⇒
∫
ϕiϕ

∗
jdr �

∫
niϕjϕ

∗
i dr = `ij and

∫
∇2ϕjϕ

∗
i dr �

∫
∇2ϕiϕ

∗
i dr = d (10.33)

it can be shown that, at each i

ψ̇ = −i|ψi|2ψ + (1− ig)
(
Riψi +

∑
ij

Jijψj

)
− ψi (10.34)

and

Ṙi = b0

(
γi −Ri − ξRi|ψi|2

)
(10.35)

where we introduced

ψi = ai(t)e−idt (10.36)

to remove a term involving d, and

γi = fi
b0

∫
p|ϕ|2dr, ξ = b1

`b0

∫
n|ϕ|4dr, Ri = `κi, ` = `ii (10.37)

The couplings Jij are determined to be

Jij =
{

0 when i = j
(Ri`ij +Rj`

∗
ji)/` otherwise (10.38)
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It will be convenient to denote

Jijeiνij =
(Ri`ij +Rj`

∗
ji)

`
(10.39)

Aside from the leading non-linear term, (10.34)-(10.35) are the Lang-Kobayashi equations seen in
laser theory.

A limit of relevance is that of fast reservoir relaxation, meaning γR � γc which corresponds to
b0 � 1. In this case we can use the stationary state solution for the reservoirs,

Ri = γi

1 + ξ|ψi|2
≈ γi − ξγi|ψi|2 (10.40)

for small densities (close to threshold). Substituting into the dynamical equation for the oscillator
at i,

ψ̇i = i (gξγi − 1) |ψi|2ψi − ξγi|ψi|2ψi + (1− ig)
[
γiψi +

∑
ij

Jijψi

]
− ψi (10.41)

We have essentially a system of SL oscillators ψi = √ρieiθi since, upon separating real and imaginary
parts,

1
2 ρ̇i = (γi − 1− ξγiρi) ρi +

∑
ij

J̃ij
√
ρiρj cos(θij − νij + α) (10.42)

and

θ̇i = (gξγi − 1) ρi − gγi −
∑
ij

J̃ij

√
ρj
ρi

sin(θij − νij + α) (10.43)

with the notation

θij = θi − θj , tanα = g, J̃ij = Jij
cosα (10.44)

Making density adjustments γ̇i = ε(ρth − ρi) as discussed in Section 6.3 we have, in the phase
equations

θ̇i = (gξγi − 1) ρth − gγi −
∑
ij

J̃ij sin(θij − νij + α) (10.45)

where we made the assumption νij ≈ 0 (or `ij ≈ `∗ji). These describe a system of Sakaguchi-
Kuramoto oscillators. The familiar Kuramoto network is recovered in the limit α = 0↔ g ≈ 0 i.e.
negligible repulsions between the condensates and their reservoirs.

As we saw in Section 6.2, it is only the Kuramoto model and so this final regime29 g ≈ 0, that is
the true minimiser of the XY Hamiltonian i.e. gives the gradient descent of HXY. Also as discussed
there, a term h(t)ψ∗i can be added (second resonant pumping) to discretise the phases θi → 0, π.

29g ≈ 0 can be realised in experiment using a clever pumping technique: pump at the four corners of a square so
that polaritons condense at the centre of that square, away from the reservoirs.
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Figure 10.7: Dissipative gates (=) and barriers (×) are setup on a square lattice to facilitate or impede
the dissipation between condensates and so control the couplings.

It is important to note that the couplings depend on the pumping P (r, t). This poses a challenge
because each γi (thus the pumping) was adjusted to equalise the densities, meaning we cannot fix
(or know) the couplings from the outset. Thus, similar to the control of the γi, it is necessary to
subsequently adjust the Jij in order to obtain the couplings J0

ij describing the actual problem.
A second practical consideration here is that, for systems of more than three condensates plane

geometry alone is not enough to realise arbitrary couplings. Instead, the lattice is normally taken to
be regular and the dissipative properties of paths between condensates altered to setup the couplings
(Figure 10.7). Alternatively, a SLM may be used to direct light between condensates to establish
remote couplings. This has the advantage of producing real couplings (νij = 0) independent of
pumping and is a promising research direction.

11 A Coherent Ising Machine
In this final section we look at promising technology for a coherent Ising machine, a device to
minimise the Ising Hamiltonian HI .

11.1 Basic Components
The fundamental elements of the machine are shown in Figure 11.1. An optical parametric oscillator
(OPO) is pumped above threshold in a pulsed manner, creating a sequence of regularly spaced
pulses. This is achieved by choosing a loop length such that the pulses are amplified as they

Laser

SqueezerFibre loop

Figure 11.1: The primary element of the coherent Ising machine is an optical parametric oscillator
(OPO) consisting of a fibre loop and a device known as a degenerate parametric amplifier (squeezer). The
interacting elements are pulses sent along the fibre.
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Laser

Squeezer

Delay lines

(a)

Laser

Squeezer

HDFGPA
Xi

∑
j
JijXj

(b)

Figure 11.2: (a) Time-delays may be introduced by sending select pulses down additional loops of fibre.
(b) A field-programmable gate array (FPGA) takes quadrature measurements from a Homodyne detector
(HD) and imposes displacements

∑
ij
JijXj on the signal.

circulate, with macroscopic occupation occurring for the maximum gain phase configuration (this
is analogous to the bosonic stimulation with saw in Section 10.3.3). The parametric amplifier is
phase sensitive, projecting or ‘squeezing’ the pulse phases onto {0, π}.

11.2 Interactions and Measurement
Interactions may be introduced by adding time-delays to some of the pulses. These are easy to
implement with additional loops of fibre (Figure 11.2a), but the number of possible couplings is
limited by the number of delay lines. Instead we consider the use of a field-programmable gate
array (FPGA) to implement the couplings via displacements (Figure 11.2b) which allows for all
of the pulses to be coupled, although has the disadvantage that the pulses have to be formed and
measured before the interactions can be programmed.

In order to make these measurements, a portion of the optical energy entering the amplifier is
deflected to a homodyne detector which returns the position quadrature30 of each pulse Xi.

11.3 Modelling – A Hopfield Network
Each pulse has an amplitude ai = 1√

2 (Xi + iPi) where Xi and Pi are the phase space quadratures.
The change in amplitude per round trip is described by

∆ai = ωa∗i︸︷︷︸
parametric

gain

−
(
γ + s|ai|2︸ ︷︷ ︸

losses

)
ai + ξ

∑
j

JijXj︸ ︷︷ ︸
displacements

+ fi√
2︸︷︷︸

noise

(11.1)

The corresponding changes in the quadratures are

∆Xi = ωXi − γXi − s
(
X2
i + P 2

i

)
Xi + ξ

∑
j

JijXj + Re fi (11.2)

∆Pi = −ωPi − γPi − s
(
X2
i + P 2

i

)
Pi + Im fi (11.3)

30For those unfamiliar with quantum optics, this is the cosine (∝ cosϕi) component of the electric field. The
textbook by M. Fox [7] provides an excellent introduction to optical phase space and homodyne detection.
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Provided the non-linearity (second harmonic generation) does not contribute much, if a sigmoid
g(u) is applied to the displacements then

∆Xi = ξ
∑
j

Jijg (Xj) + (ω − γ)Xi + hi (hi = Re fi) (11.4)

We recognise a Hopfield network with discrete time steps, which we recall from Section 6.1 minimises
HI . As mentioned then, a first issue is that local minima are likely to be found, although this can
be mitigated with, for example, suitable noise. A second is that with unequal amplitudes it is
difficult to ensure that the correct Ising Hamiltonian is minimised, since the couplings are modified
according to displacements unknown at the start of the machine’s operation.
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A Product of Binary Variables
(Return to Section 4.5.1)

Let x, y, z ∈ {0, 1} and A, B be the statements

A: xy = z and B: xy − 2xz − 2yz + 3z︸ ︷︷ ︸
=f(x,y,z)

= 0 (A.1)

Suppose A is true. We have

f(x, y, z) = f(x, y, xy) (A.2)
= xy − 2x2y − 2y2x+ 3xy (A.3)
= 2xy

(
2− (x2 + y2)

)︸ ︷︷ ︸
f̃(x,y)

(A.4)

Then clearly f̃(0, 0) = f̃(1, 0) = f̃(0, 1) = f̃(1, 1) = 0 and so B is true. From the contrapositive
(not B implies not A)

f(x, y, z) > 0⇒ xy 6= z (A.5)

Next suppose B is true. We have

f(x, y, z) = 0⇒ z (2(x+ y)− 3) = xy (A.6)

As this is symmetric under x↔ y, there are three cases to consider:

x̄ ∧ ȳ ⇒ −3z = 0⇒ z = 0 = xy (A.7)
x̄ ∧ y ∨ x ∧ ȳ ⇒ −z = 0⇒ z = 0 = xy (A.8)
x ∧ y ⇒ z = 1 = xy (A.9)

So B implies A. The contrapositive is

xy 6= z ⇒ f(x, y, z) 6= 0⇔ f(x, y, z) > 0 (A.10)

since f is non-negative. Hence (4.19) and (4.20) have been established. You can verify both using
the truth table below.

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1

f(x, y, z) 0 3 0 1 0 1 1 0
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B The Mandelung Transformation
(Return to Section 8.3.2)

Writing ψ(r, t) =
√
n(r, t)eiS(r,t) we calculate

ψ̇ = 1
2
ṅ√
n
eiS + i

√
nṠeiS (B.1)

∇ψ = 1
2
∇n√
n
eiS + i

√
n(∇S)eiS (B.2)

∇2ψ =
(

1
2
∇2n√
n
− 1

4
(∇n)2

n3/2 + i
∇n · ∇S√

n
+ i
√
n(∇2S)−

√
n(∇S)2

)
eiS (B.3)

and then from the GPE

i~
∂ψ(r, t)
∂t

=
(
− ~2

2m∇
2 + V (r, t) + U0|ψ(r, t)|2

)
ψ(r, t) (B.4)

⇒ i~
[

1
2
ṅ√
n

+ i
√
nṠ

]
= − ~2

2m

[
1
2
∇2n√
n
− 1

4
(∇n)2

n3/2 + i
∇n · ∇S√

n
+ i
√
n∇2S −

√
n(∇S)2

]
+ (V + U0n)

√
n

(B.5)

The imaginary part gives

1
2
ṅ√
n

= − ~
2m

(
∇n · ∇S√

n
+
√
n∇2S

)
(B.6)

⇒ ṅ = −∇n ·
(

~
m
∇S
)
− n∇ ·

(
~
m
∇S
)
≡ −∇ · (nv) (B.7)

That is

∂n

∂t
+∇ · (nv) = 0 (B.8)

As for the real part,

−~Ṡ =

1
2mv

2︷ ︸︸ ︷
~2

2m (∇S)2 +V + U0n−
~2

2m

( (∇2√n)/
√
n︷ ︸︸ ︷

∇2n

2n −
(∇n)2

4n5/2

)
(B.9)

⇒ m
∂v

∂t
≡ ~∇Ṡ = −∇

(
1
2mv

2 + V + U0n−
~2

2m
∇2√n√

n

)
(B.10)

Finally in the expression for energy (8.3) we note that the kinetic energy density splits up into a
classical and non-classical part:

~2

2m |∇ψ|
2 = ~2

2m
(∇n)2

4n + ~2

2mn (∇S)2 ≡ ~2

2m
(
∇
√
n
)2 + 1

2mnv
2 (B.11)

61



References Hybrid Photonics Computing

References
[1] G. De las Cuevas and T. S. Cubitt, Science 351, 1180 (2016).
[2] R. M. Karp, in Complexity of computer computations: proceedings of a symposium on the

complexity of computer computations, edited by R. E. Miller, J. W. Thatcher, and J. D.
Bohlinger (Springer, 1972), pp. 85–103.

[3] M. Newman, Networks, 2nd ed. (Oxford University Press, 2018).
[4] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,

and engineering, Studies in Nonlinearity (CRC Press, 2000).
[5] S. H. Strogatz, Physica D: Nonlinear Phenomena 143, 1 (2000).
[6] A. Lucas, Frontiers in Physics 2, 10.3389/fphy.2014.00005 (2014).
[7] M. Fox, Quantum optics an introduction (Oxford University Press, 2006).
[8] J. Keeling and N. G. Berloff, Contemporary Physics 52, 131 (2011).
[9] N. G. Berloff et al., Nature Materials 16, 1120 (2017).
[10] H. Miesner et al., Science 279, 1005 (1998).

2020-07-09 62

https://doi.org/10.1126/science.aab3326
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1080/00107514.2010.550120
https://doi.org/10.1038/nmat4971
https://doi.org/10.1126/science.279.5353.1005

	Overview and Motivation
	Introduction
	Hybrid Photonics Computing
	Limitations of Conventional Computing
	Non-conventional and Neuromorphic Computing


	Spin Hamiltonians and Non-linear Programming
	The XY and Ising Models
	Sum Notation: A Warning

	Quadratic Programming
	Simple Spin Systems
	Two Spins
	Triangle
	Antiferromagnetic Rings


	Elements of Complexity Theory
	Common Complexity Classes

	Ising Formulations of NP Problems
	Partitioning Problems
	Max-Cut (O)
	Number Partitioning (D, O)
	Graph Partitioning (O)

	General Considerations
	Hamiltonian Cycles
	Existence on a Directed Graph (D)
	Travelling Salesman (O)

	Colouring Problems
	Graph Colouring (D)

	Reduction of k-local Hamiltonians
	Reduction of 3-local Hamiltonians

	Number Factoring
	3SAT
	Example and Mapping


	Network Dynamics
	Graph Matrices
	Spectra of Networks

	Dynamical Systems on Networks
	Linear Stability Analysis
	Symmetrical Fixed Points and Special Cases
	Multiple Variables Per Node
	Limit Cycles and Synchronisation


	Networks for the Minimisation of Spin Hamiltonians
	Hopfield
	Kuramoto Model
	Stuart-Landau Oscillators
	Second Resonance


	Physical Simulators: Equilibrium Systems
	Quantum Adiabatic Optimisation

	Condensation in Physical Systems
	Matter Fields
	Bose-Einstein Condensation
	Modelling Atomic Condensates
	The Gross-Pitaevskii Equation
	Hydrodynamic Description
	Stationary Solutions
	The Thomas-Fermi Approximation, Healing Length and Harmonic Traps

	Preparing Atomic Condensates

	Optical Lattices
	Tight Binding
	Realising the XY Hamiltonian

	Polariton Condensates
	Condensation
	Injection
	Modelling Polariton Condensates
	The Driven Dissipative GPE
	Steady State Outflow
	Condensate Coupling: Polariton Multiplets
	Coupled Polariton-Excition Reservoir System
	Tight-binding in a Polariton Network


	A Coherent Ising Machine
	Basic Components
	Interactions and Measurement
	Modelling – A Hopfield Network

	Product of Binary Variables
	The Mandelung Transformation

